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Abstract—To provide high coverage and combat high attenu-
ation, mmWave networks typically require dense deployment of
base stations, and adopt a self-backhauled network architecture
where data are transmitted via multi-hop links. The unique
characteristics of mmWave links (e.g., highly directional beams,
sensitivity to blockage) bring challenges to designing an efficient
online routing algorithm, where beam selection must be simulta-
neously considered. In this paper, we formulate the online joint
path and beam selection (JPBS) problem for multihop mmWave
networks. We exploit the Unimodal property of the mmWave
channel to design a new and efficient combinatorial bandit
algorithm for JPBS: Combinatorial Unimodal Lower Confidence
Bound based Joint Path and Beam Selection (CULCB-JPBS).
We prove a finite-time regret bound of CULCB-JPBS and show
that it is independent of the number of beams in each link.
Furthermore, our experimental and simulation results show that
our proposed learning algorithm can significantly improve the
convergence rate and yield much lower regret (thus lower end-
to-end delay), compared with existing approaches.

I. INTRODUCTION

To meet the explosive growth of wireless devices and mobile
data traffic demand, the fifth-generation (5G) network aims
to deliver massive connectivity and data rate, high reliability
and low latency [1]. As the sub-6 GHz spectrum is becoming
increasingly scarce, both academia and industry are exploring
the underutilized mmWave frequency bands (30-300 GHz) [2],
which promises high data rates. Due to the short wavelength,
mmWave communications suffer from high attenuation and
penetration loss, as well as are sensitive to blockage [3], which
necessitates directional beamforming with a large number of
antennas. Thus, in practice, to provide ubiquitous coverage,
mmWave base station (BS) deployments typically require high
density with short distances among them (< 200m). Since
high-speed wired backhaul (e.g., optical fibre connections)
may not always be available and incurs high cost, wireless
self-backhauling was proposed as a promising alternative,
in which the same spectrum is used for both coverage and
backhaul connectivity to other BSes. This is referred to as
ultra-dense self-backhauled small-cell deployments (a.k.a. in-
tegrated access and backhaul [4]–[6]), which has been adopted
by the industry. In self-backhauled mmWave networks, only a
fraction of BSes have fiber/wired connections and other BSes
connect to them via multi-hop, short distance wireless links.
This is also compliant with the cloud-RAN architecture in 5G,
where the centralized unit (CU) and distributed unit (DU) are

separated and the self-backhaul can be used to transmit high-
speed baseband data from the CU to DU [4], [7].

Previous works have shown that self-backhauled mmWave
networks can improve the coverage, throughput and trans-
mission reliability [8]–[10]. However, using multi-hop trans-
missions may increase the end-to-end (E2E) delay, which
plays a vital role in Ultra-reliable low-latency communication
(URLLC) applications (one of the main scenarios specified by
3GPP 5G standards). Example URLLC applications include
vehicle-to-everything (V2X), virtual-reality/augmented reality
(VR/AR), remote collaborative surgery, networked unmanned
vehicles, and etc. Thus, it is important to select the optimal
path from a macro BS to the UE via multiple small-cell
BSes to minimize the E2E delay, which must be updated
in an online manner, due to wireless channel dynamics (e.g.,
natural channel fluctuations, blockage or UE mobility). On the
other hand, due to the high directionality of mmWave beams,
beam alignment and tracking has been a challenging problem
for individual one-hop mmWave links (where most existing
works focus on, e.g., [11]–[13]). Since there are typically a
large number of beams in the beamforming codebook, beam
training-based algorithms can incur large signaling overhead
and delay. Applying them directly to a multi-hop network (by
training each link’s beams first and then choose the path using
the best beams’ costs as metric) will only exacerbate this issue
by bringing even higher overhead and delay. Thus, path and
beam selection must be considered jointly in an online manner.

In this work, we formulate the joint path and beam selection
(JPBS) in self-backhauled mmWave networks as an online
learning problem. Naively, if we apply a standard multi-arm
bandit (MAB) algorithm, with each arm corresponding to
(path, beam) combinations, the number of arms is exponential
in the size of the network and the number of beams per link,
which is not scalable in practice. To solve this problem, we
propose a new combinatorial bandit algorithm by exploiting
the unique property of mmWave channels. That is, the ex-
pected delay (inverse of packet delivery probability) of each
link satisfies the Unimodality structure over the beam space,
which we validate theoretically and experimentally. Based on
this property, our proposed algorithm jointly chooses a path
and beams for all the links on the path in an online manner,
which enjoys fast convergence to the optimal path and beam
choices, whose regret does not depend on the number of
beams. Our main contributions are summarized as follows:



(1) We formulate the online joint path and beam selection
problem in self-backhauled mmWave networks. We show that
if the average SNR of a mmWave link has Unimodal property
over the beam space, the successful packet delivery probability
(and expected link delay) also has the Unimodal property.
Experimental results confirm our theoretical analysis.

(2) We propose a new combinatorial Unimodal multi-armed
bandit algorithm for joint path and beam selection: CULCB-
JPBS. We derive an instance-dependent upper regret bound
for the CULCB-JPBS, which does not depend on the number
of beams for each link, in contrast to the linear dependence
of regret on the number of beams for the state-of-the-art
combinatorial bandit algorithm without exploiting Unimodal
property. Our CULCB-JPBS is general enough so that it can
be applied to other applications where Unimodality is satisfied.

(3) We carry out real-world experiments and collect data us-
ing a 28 GHz USRP-based mmWave communication platform.
Using both experimental data and simulations, we validate our
algorithm’s efficiency and effectiveness in terms of cumulative
regret, delay and number of successfully received packets.
We show that CULCB-JPBS achieves much lower regret and
delay, and converges faster than three baseline algorithms.

II. RELATED WORK

A. Beam Alignment for Single-hop MmWave Links

Existing beam alignment algorithms for mmWave can be
divided into offline and online ones [14], [15]. An example of
the former is the work of Hassanieh et al. [16], which proposed
a fast mmWave beam alignment algorithm without scanning
the whole search space. It can find the best beam alignment in
O(KlogN), where K is the number of channel paths and N
is the number of beams. However, offline algorithms assume
static channels and incur extra training overhead.

For the online setting, the closest work is Hashemi et
al. [11], who proposed a Multi-Armed Bandit (MAB)-based
algorithm for beam alignment in a mmWave link, exploiting
the inherent correlation of the channel. The idea is to leverage
the unimodal property of average RSS to significantly reduce
the search space to the neighbors of optimal beam, by elim-
inating beams with worse performance. Wu et al. [12] also
proposed an MAB-based algorithm that takes advantage of
the correlation among beams, assuming multi-modal expected
reward functions. Both works assume stochastic channels with
fixed distributions. Aykin et al. [13] proposed an adaptive
Thompson sampling algorithm to deal with user mobility,
using a discount factor to emphasize current reward value
and de-emphasize past reward value. However, the discount
factor is difficult to set in practice because it depends on the
velocity of the user. Note that, online algorithms can achieve
data transmission and learning simultaneously.

B. Routing in Self-backhauled Mmwave Networks

Yuan et al. [17] formulated a joint path selection and
scheduling problem to optimize QoS in self-backhauled
mmwave networks. However, this algorithm is offline and
they did not consider beam selection. Since this problem

is NP-hard, they proposed an approximation algorithm with
performance guarantee. Vu et al. [10] proposed a joint rate
and path selection algorithm to select the best paths and
allocate rates over these paths subject to latency constraints.
Learning the best path is done by employing a reinforcement
learning algorithm, and the rate allocation is solved by the
successive convex approximation method. However, it adopts
the ϵ-greedy algorithm to do exploration, which usually has
a suboptimal regret guarantee. Sun et al. [18] proposed two
MAB based handover mechanisms to reduce unnecessary
handovers. However, their approaches cannot guarantee that
the channel remains stationary within each block because of
the mobility of users. To the best of our knowledge, we are the
first to study the online JPBS problem in mmWave networks.

C. Unimodal Bandit

In a Unimodal bandit problem, the expected reward of
arms forms a Unimodal function (a function is said to be
Unimodal if it has only one peak (valley), e,g. parabola). If the
Unimodal function has a peak, we will solve a maximization
problem to find the largest point. Otherwise, we will solve
a minimization problem to find the smallest point if the
Unimodal function has a valley. Here, specialized algorithms
have been designed to exploit the Unimodality structure, to
achieve faster convergence rate (compared to standard bandit
algorithms such as UCB and Thompson Sampling). Yu et
al. [19] initiates the study of this problem, under continuous
arm and discrete arm settings. Combes et al. [20] proposed
Optimal Sampling for Unimodal Bandits (OSUB), and exploits
the Unimodal structure under the discrete arm setting. They
provided a regret upper bound for OSUB which does not
depend on the number of arms. Zhang et al. [21] showed
that the effective throughputs of mmWave codebooks possess
the Unimodal property and proposed a Unimodal Thompson
Sampling (UTS) algorithm to deal with mmWave codebook
selection. Zhao et al. [22] study bandits with clustered arms,
where the expected reward of each cluster has a Unimodal
structure. It can be applied to multi-channel mmWave beam
selection or the codebook selection problem. The main differ-
ence of our work with [22] is the system model. The above
works are only applicable to the single link/one-hop setting.
In contrast, our work deals with the more challenging semi-
bandit routing settings, whereas bandits with clustered arm
can be regarded as a special case, where each cluster can be
viewed as a separate direct link from the source to destination.

D. Combinatorial Bandit

In a combinatorial bandit problem, each (combinatorial) arm
is a combination of individual arms, and the reward function
has a linear form. The semi-bandit feedback model assumes
the availability of reward feedback from each individual arm
belonging to the chosen arm. Gai et al. [23] proposed a Learn-
ing with Linear Rewards (LLR, a.k.a. combinatorial UCB,
CUCB) algorithm to solve online combinatorial semi-bandit
problems, with applications to maximum weighted matching,
shortest path, minimum spanning tree, etc. Although LLR is
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Fig. 1. The system model of 5G self-backhauled multihop mmWave networks.

applicable to our online JPBS problem, as we will see, a naive
application of LLR has a regret bound that depends linearly on
the number of beams per link, which can be large in practice.
In contrast, our work assumes Unimodality of the cost of each
link, and our algorithm exploits the Unimodality to achieve
a significantly lower regret bound. He et al. [24] proposed
another combinatorial bandit algorithm for online shortest path
in multi-hop wireless networks using probing packets to gather
feedback. The difference with our work is that it considers sub-
6GHz bands. Talebi et al. [25] also formulated the shortest path
routing problem as a combiatorial bandit optimization problem
and proposed algorithms under different settings where routing
decisions are made. Their work differs from Gai et al. [23]
because their algorithms adopt the KL-UCB-style confidence
bound construction instead of UCB. None of the above works
exploit the Unimodal property.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a 5G millimeter wave self-backhauled network
which is shown in Fig. 1. We consider downlink (DL) unicast
transmissions,where a macro base station (BS) with a wired
backhaul is the source node, and a user equipment (UE) is
the destination. Other pico BSes (aka. small cells) act as
wireless backhaul, and are used as relay nodes between the
source and destination to compensate the high path-loss in the
mmWave band. Each node is equipped with an antenna array
for analog beamforming. For the mmWave channel model, we
consider a link between a transmitter (Tx) and receiver (Rx),
which have Nt and Nr antennas respectively. Ht denotes
the physical channel between Tx and Rx at time slot t,
which is a Nr × Nt complex channel matrix. We denote the
beamforming codebook for Tx as F = {f1,f2, · · · ,fBTx

}
and the one for Rx as Q = {q1, q2, · · · , qBRx

}, where BTx

and BRx are the maximum number of narrow beams that
can be generated by Tx and Rx, respectively, and fm ∈
CNt×1,m = 1, 2, · · · , BTx, qn ∈ CNr×1, n = 1, 2, · · · , BRx

are phase shift vectors for each beam. We denote B = F ×Q,
and the total number of beam vector pairs in each link as
B = |B| = BTx ×BRx. The received signal is

y(t) = qH
n Htfms(t) + qH

n z(t), (1)

where s(t) is the transmitted signal, and z(t) ∈ CNr×1 is
a vector of complex white Gaussian noise. The channel Ht

is time-varying, and we assume that at each time slot, it is
independently drawn from a fixed but unknown distribution
due to fading and possible environmental disturbances. This
is called the stochastic setting which is also considered by pre-
vious works [11], [12]. Note that, to handle channel dynamics
(blockage or UE mobility), we can assume that the channels
have multiple states, which can be considered as stochastic in
each state (e.g., different blockage states or UE locations), or
piece-wise stationary [26] (will be discussed in Sec. VI).

We do not assume a specific channel model/distribution as
it is unknown, but we assume that each link’s average SNR or
received signal strength (RSS) satisfies the Unimodal property
over beam space. That is, if we fixed either the Tx’s or Rx’s
beamforming vector, average SNR of the received signal is a
Unimodal function w.r.t. different beam indices of the Rx or
the Tx (respectively). In this paper, we assume that the Rx’s
beam vector is fixed and only the Tx can change its beam,
which gives a one-dimensional (1-D) Unimodal function. We
will consider the 2-D Unimodal property in our future work.
Previous works provided theoretical analysis ([12], [27]) and
experimental results ([18]) to show that such unimodality
assumption holds for mmWave channels with a single path
(or a dominant line-of-sight, LoS path). This is applicable to
self-backhauled mmWave networks because they are deployed
outdoors with LoS, and typically reflectors are faraway [6].

B. Problem Formulation

We represent the above mmWave self-backhauled network
as a directed graph G = ⟨V,E⟩ with a source node s and
a destination node d, where V is the set of all vertices and
E is the set of all the directed edges. Denote E = |E|. In
our problem, the vertices include both BSes (source or relay
nodes) and UEs (as destinations), each edge corresponds to a
link l = (i, j) between nodes i and j. Our goal is to choose
a routing path and corresponding beams for each link on the
path, to optimize certain Quality-of-Service (QoS) metric. We
define (l, b) as a tuple of link l ∈ E, and a beam (pair)
b ∈ B= {1, 2, . . . , B} for this link. Also, al,b is an indicator
variable: al,b = 1 means link l is selected and beam b is used
for link l; otherwise, al,b = 0. We define θl,b as the expected
cost using the b-th beam for link l ∈ E.

The online JPBS problem is formulated as a combinatorial
unimodal bandit. An individual arm is a tuple (l, b), l ∈ E, b ∈
B. A combinatorial arm a is defined as a set of chosen links
and beams, represented by a binary vector a (its elements are
al,b). The feasible set of arms is:

Ω = {a ∈ {0, 1}BE : s.t. Eq.(2− 4)};



∀l ∈ E, b ∈ B, al,b ∈ {0, 1}, (2)

∀l ∈ E,
∑
b∈B

al,b = 1, (3)

∀i,
∑

l:pre(l)=i

∑
b∈B

al,b −
∑

l:suc(l)=i

∑
b∈B

al,b =

 1 i = s
−1 i = d
0 otherwise

(4)

where Eq. (3) means that only one beam is chosen by every
link, Eq. (4) ensures a valid loop-free path is selected; here we
also define pre(l) and suc(l) as the transmitter and receiver
vertices of link l, respectively.

At each discrete time step t = 1, .., T , the learner (the
macro BS in our setting) chooses an arm a(t) ∈ Ω, and
observes instantaneous costs Xl,b(t) for all (l, b) ∈ Aa(t),
where E[Xl,b(t)] = θl,b, and for any a, Aa denotes the
set of all (l, b) tuples such that al,b = 1. The instantaneous
cost X(t) of an arm is the summation of the instantaneous
costs, Xl,b(t), of each chosen individual arm (l, b): X(t) =∑

l,b al,b(t)Xl,b(t). Also, we define µa =
∑

l,b al,bθl,b. Then,
we have E[

∑T
t=1 X(t)] = E[

∑T
t=1 µa(t)]. Here, Xl,b(t) are

random variables.
Thus, we need to minimize the expected cumulative cost,

defined as X = E[
∑T

t=1 X(t)], and T is the total running
time. We define the policy π as a strategy to select a sequence
of arms a(t). Our objective is to sequentially choose arm a(t)
at each time step to minimize the expected cumulative cost.
Our online optimization problem can be formulated as

OnlineOpt : min
π

X = Eπ[

T∑
t=1

∑
l,b

al,b(t)Xl,b(t)], (5)

where π denotes a joint path-beam selection policy. The
cumulative regret is defined as follows:

E[Regret(T )] = E[

T∑
t=1

(µa(t) − µa∗)], (6)

where µa∗ is the expected cost of the optimal arm in the
offline problem. Note that, minimizing the expected cumula-
tive costs in Eq. 5 is equivalent to minimizing the expected
cumulative regret [23].

For online end-to-end (E2E) delay minimization, we set
Xl,b(t) = d̃l,b(t) which is the instantaneous delay of a link-
beam pair (the number of trials to transmit a packet until it
is successfully delivered on a link l using beam b; d̃l,b(t) is
a random variable). We focus on minimizing E2E delay as it
plays a vital role in URLLC applications [1], [28]. In this case,
θl,b = dl,b where dl,b is the expected delay of successfully
delivering a packet using the b-th beam on link l ∈ E. Since
we assume the channel is independent across time slots, the
link delay (number of successive failures before success) fol-
lows a Geometric distribution with mean dl,b = 1/pl,b, where
pl,b is the successful packet delivery probability using the b-th
beam for link l ∈ E. The formulation can also be extended to
consider end-to-end reliability as the objective/constraint.

Additionally, we have the following assumption:

Assumption 1. [Unimodality of expected link cost] The ex-
pected cost of every beam b under each link l, is a unimodal
function w.r.t. the beam space b ∈ B. Unimodal function means
that there exists a unique valley b∗(l) of θl,1, . . . , θl,B;

The expected link cost (delay) is the inverse of success
probability. While it is a common assumption for mmWave
that the link SNR/RSS has Unimodal properties w.r.t. beam
space [11], [12], it is not straightforward that the success
probability also has the unimodal property. We formalize this
relation in the following Lemma.

Lemma 1. For any fixed link l, if the average SNR has
Unimodal property over the beam space and the SNR has same
distribution shape with different means for different beams, the
successful packet delivery probability and expected delay also
have Unimodal properties over the beam space.

Proof. To prove the unimodality of successful packet delivery
probability, it suffices to prove the following: if E[γbj ] ≤
E[γbi ], then psuccessbj

≤ psuccessbi
, where γbi/j is the SNR

for beam bi/j , psuccessbi/j
is the successful packet delivery

probability under beam i/j, which can be derived by the
outage probability. The outage probability of a beam b is
defined as: Pout,b = p(γb < γ0) =

∫ γ0

0
pγb

(γ)dγ, where
γ0 is the minimum SNR required for successfully decoding
a packet. Then, we have psuccessb = 1 − Pout,b. We denote
fi/j(γ), Fi/j(γ) as the probability density function (PDF)
and cumulative distribution function (CDF) for beam bi/j ,
respectively. Also, we define f0(γ), F0(γ) as the PDF/CDF
which has same distribution shape with γbi/j except with a
zero-mean. Then we have Pout,bi = Fi(γ0) =

∫ γ0

0
fi(τ)dτ =∫ γ0

0
f0(τ − E[γi])dτ =

∫ γ0−E[γi]

0
f0(τ)dτ = F0(γ0 − E[γi]).

Similarly, Pout,bj = Fj(γ0) = F0(γ0 − E[γj ]). Note that
E[γj ] ≤ E[γi]. Then Fi(γ0) ≤ Fj(γ0), and we have
psuccessbj

≤ psuccessbi
.

Since the expected link delay is geometrically distributed
with mean 1/psuccessb [25], which is a monotonically decreas-
ing function w.r.t. psuccessb . Thus, the expected link delay also
has Unimodal property over the beam space.

Remark: Lemma 1 requires that the link SNR has the
same distribution shape with different means for different
beams. We now justify this condition using a generic mmWave
signal propagation model adopted by previous works [18],
[29]: γj = 10 log(

PTxGRx
j GTx

j PL(d)−1

Pn
) dB, where PTx is the

transmit power, Pn is noise power and GRx
j and GTx

j are the
gains of the receive and transmit antenna arrays for beam j
(in the directions of angle-of-arrival and angle-of-departure),
respectively, d is the distance between transmitter and receiver,
PL is the path loss. PL(d) = α + 10β log10(d) + ξ, ξ ∼
N(0, σ2), where α, β are the least square fittings of floating
intercept and slope (respectively) over the measured distances,
and ξ represents log-normal shadow fading with variance σ.
Then, we have E[γj ] = 10 log(

PTxGRx
j GTx

j

Pn
)−E[PL(d)] dB.



TABLE I
FREQUENT NOTATIONS

a a combinatorial arm that contains individual arm (l, b)
Aa

{
(l, b) : l ∈ E, b ∈ B, al,b = 1

}
, the set of individual arms in a

a∗ the optimal arm
L maxa∈Ω |a|

ml,b(t) number of times that individual arm (l, b) has been selected up to round t.
θ̂l,b(t) empirical mean of individual arm (l, b) has been selected up to round t.
∆a µa − µa∗

Ta(t) number of times arm a has been played in the first t time rounds.

We can see that E[γj ] is different under different beam j, but
γj’s PDF’s shape does not change with j, as the path loss
PL(d) has the same distribution since the physical channel
statistics does not depend on the beams.

IV. COMBINATORIAL BANDIT-BASED JOINT PATH AND
BEAM SELECTION

In this section, we first introduce a naive combinatorial
lower confidence bound (CLCB)-based JPBS algorithm, and
then we introduce an improved CLCB algorithm, where we
incorporate Unimodal bandit into CLCB, which has a much
lower regret bound. We focus on the stochastic bandit setting.

A. Combinatorial LCB based Joint Path and Beam Selection

We first present a naive baseline, Combinatorial Lower
Confidence Bound-based Joint Path and Beam Selection, ab-
breviated as CLCB-JPBS (Alg. 1). CLCB-JPBS is a direct
adaptation of Gai et al’s [23] LLR algorithm in our online joint
path-beam selection problem; it uses the “optimism in the face
of undertainty” principle: maintain lower bound estimates of
the costs of individual arms (line 12, and solve an offline opti-
mization problem in each step with the lower bound estimates
using Dijkstra’s algorithm (line 13). A small modification
from LLR (Gai et al [23]) is that, we use a slightly tighter
lower confidence bound for each individual arm’s cost (we
use

√
2 log(T )
ml,b(t)

, whereas LLR uses
√

(L+1) log(T )
ml,b(t)

), which is
still valid with high probability.

The CLCB-JPBS algorithm proceeds as follows: first, the
algorithm initializes the maximum number of individual arms
(i.e., L) in an arm (a combination of path and beams/set of
link-beam pairs) (line 1). Then, it loops over all the links and
beams in each link (line 3 and 4) to explore each l, b at least
once (line 5) and obtain their initial empirical mean θ̂l,b and
ml,b. After the initialization stage, from time steps BE + 1,
the CLCB-JPBS algorithm greedily pulls the optimum arm
from its feasible set Ω according to minimizing the optimistic
lower bound on the expected cost, i.e., solving the optimization
problem shown in line 13. Then, a packet is transmitted from
s to d using selected arm (retransmitted in each link until
the packet is received by the destination successfully). Lastly,
in line 14, the empirical mean θ̂l,b and count ml,b are also
updated according to the observed delay Xl,b(t). The delay
for each link and beam pair is obtained from ACK messages.
We have the following regret guarantee of Alg. 1:

Theorem 1 The expected regret of Alg. 1 is:

E[Regret(T )] ≤ O

(
∆max

BEL2 log(T )

∆2
min

+BEL

)
, (7)

Algorithm 1 Combinatorial LCB based joint path and beam
selection (CLCB-JPBS)

1: If maxa |a| is known, let L = maxa |a|, else L = E.
2: For each combination of beam and link (l, b): θ̂l,b(0) =

0,ml,b(0) = 0
3: for link l ∈ E do
4: for beam b ∈ B do
5: Transmit a packet on a certain route with chosen

combination of link and beam al,b = 1 in a
6: Update (θ̂l,b)1×BE , (ml,b)1×BE

7: end for
8: end for
9: t = BE

10: for t = BE · · ·T do
11: t = t+ 1

12: For every l, b, define θl,b(t) = θ̂l,b −
√

2 log(T )
ml,b(t)

13: Select a path (set of links) and beams
for each link on the path, according to
a(t) = argmina∈Θ

∑
(l,b)∈Aa

θl,b. Then, transmit
a packet from s to d using this path and beam
combination (retransmit until the packet is successfully
delivered to destination.

14: Obtain the feedback of delay Xl,b(t) from ACK mes-
sages for each selected link and beam pair, and update
(θ̂l,b)1×BE , (ml,b)1×BE as follows:

(θ̂l,b(t),ml,b(t)) =


(
θ̂l,b(t−1)·ml,b(t−1)+Xl,b(t)

ml,b(t−1)+1 ,

ml,b(t− 1) + 1), if link l in Aa(t),

(θ̂l,b(t− 1),ml,b(t− 1)),

if link l not in Aa(t).

15: end for

where ∆min = mina∈Ω,a ̸=a∗{µa − µa∗}, ∆max =
maxa∈Ω{µa − µa∗}.

Proof outline for Theorem 1: The analysis of Alg. 1 is
largely inspired by that of LLR [23]. Compared with the
LLR algorithm, the difference in our proof is that we define
a different event E to make sure if some arm has sufficient
sampling, it will not be chosen anymore. The detailed proof
is in Appendix VIII-A.

Remark: Compared with the result of LLR algorithm,
our regret bound reduces from O(L

3BE log(T )∆max

∆2
min

) [23] to

O(L
2BE log(T )∆max

∆2
min

) (from L3 to L2 in the log(T ) term). This
is due to the slightly tighter confidence bound construction of
each individual arm’s cost.

B. Combinatorial Unimodal LCB-based Joint Path and Beam
Selection (CULCB-JPBS)

A main drawback of the baseline algorithm is that, its
regret guarantee has a linear dependence with B, the number
of beams for each link; this is impractical since B can
be very large. In this section, we propose a new algorithm



that utilizes Unimodal property to achieve a regret guarantee
independent of B. The key challenge to combine CLCB-JPBS
with a Unimodal bandit algorithm is the nonstationary nature
of the rewards within a link (as each link’s selected beam
changes over time and may gradually converge to pulling
the link’s optimal beam). Directly using a Unimodal bandit
as a subroutine for beam selection for a chosen link does
not provide a theoretical regret guarantee. The design of
the algorithm should follow the “optimism in the face of
uncertainty” principle: it needs to adopt the regret guarantee
of the Unimodal bandit algorithm during each link’s beam
selection to construct a valid lower confidence bound for each
link’s optimal cost. Our proposed algorithm is built upon the
CLCB-JPBS and stochastic golden search for discrete arm
(SGSD) [22], and we call it Combinatorial Unimodal LCB
based joint path and beam selection (CULCB-JPBS), namely,
Alg. 2. It has a provable regret guarantee. Before we present
Alg. 2, we make the following assumption for each link l:

Assumption 2. [Bounded expected cost difference] There exist
positive constants DL and DH such that

∣∣θl,b − θl,b+1

∣∣ ≤ DH ,
and

∣∣θl,b − θl,b+1

∣∣ ≥ DL for all j ∈ {1, . . . , B}.

The reason for this assumption is to avoid sharp peak and
flat plateau in the expected cost functions. The basic idea of
CULCB-JPBS is to decouple the selection of the links and the
beams: at every time step t, it first chooses a link vector l(t)
from the feasible link vector set (line 10)

Θ̃ = {l ∈ {0, 1}E : Rl form a path from s to d},

where for any l ∈ {0, 1}E , we use Rl := {l ∈ E : ll = 1} to
denote the set of links represented by l; then the algorithm
selects beam for all selected links l(t) using a specialized
procedure (line 12 to 23). Our algorithm design follows the
“optimism in the face of uncertainty” principle: link sets are
chosen according to their optimistic lower confidence bounds
(LCBs) on their minimum expected costs νl = minb∈B θl,b.

In more detail, the algorithm proceeds as follows: In the
initialization phase (line 3 to 7), it begins by selecting each
combination of beam and link at least once to ensure Ml(t)
and ν̂l(t) are updated. Ml(t) is number of times that link l
has been selected and ν̂l(t) is the empirical mean value for
the link l. Once the initialization is completed, the algorithm
selects the link set vector that minimize our designed LCB
(line 10). The LCB for link l is:

ν̂l(t)−

√
2 log(t)

Ml(t)
− DH

DL

√
log(t)

Ml(t)
,

where the first term is the empirical mean value of the Ml(t)
costs obtained by pulling the beams in link l. The second
term accounts for the concentration between the sum of the
noisy costs and the sum of their corresponding expected costs.
The third term is one of our new algorithmic contributions
– it accounts for the suboptimality of the arm selection in
link l by SGSD so far, calculated by dividing SGSD’s regret
O(DH

DL

√
Ml(t)) by Ml(t). The three terms jointly ensures that

the LCB is indeed a high-probability lower bound of νi. In line
10, Alg. 2 selects a link set Rl ∈ Θ̃, and subsequently select
a beam for each link and obtain its cost Xl,b (lines 12 to 23).
Lastly, in line 25, the algorithm updates the chosen link l’s
statistics, empirical cost mean ν̂l(t) and count Ml(t). Other
links’ statistics remain the same as time step t− 1.

The optimization problem in line 10 of Alg. 2 is determin-
istic in each given round t, to obtain the current optimal link
set vector l(t). This is also a shortest path problem and we
apply Dijkstra’s algorithm to solve it in polynomial time.

As mentioned above, for each link l, the algorithm runs a
separate copy of the SGSD [22] (line 12 to 23). SGSD is a re-
cent Unimodal bandit algorithm. Its high level idea is to reduce
the discrete-arm Unimodal bandits problem to a continuous-
arm Unimodal bandits problem, using the Stochastic Golden
Search (SGS) algorithm in the continuous arm setting [19].
Specifically, the beam selection problem in link l is a discrete-
arm Unimodal bandit problem with expected costs of B beams
being θl,1. . . . , θl,B . Every beam j is associated to a point j/B
in the [0, 1] interval and perform linear interpolation, inducing
a function f over the continuous interval [0, 1], where for each
j ∈ B = {1, . . . , B}:

f(x) := θl,j−1 ·(j−Bx)+θl,j ·(Bx−(j−1)), x ∈ [(j−1)/B, j/B).
(8)

SGS is then used to optimize f . Observe that f has mini-
mum at x∗ = j∗/B (j∗ is the optimal beam argminj∈B θl,j),
and for x ∈ [j/B, (j+1)/B), bandit feedback of f(x) can be
simulated by pulling a beam randomly from {j, j+1} (Alg. 3).
To this end, it narrows down the sampling interval, maintaining
the invariant that j∗/B ∈ [xl

A, x
l
C ] with high probability.

Theorem 2: Under the Assumptions 1, 2, when T ≥ 3, the
expected regret of Alg. 2 is:

E[Regret(T )] ≤ O

∆maxE(DH
DL

)2L2 log(T )

∆2
min

+
DHL log(T )

(DL)2

 ,

where ∆min = mina∈Ω,a ̸=a∗{µa − µa∗}, ∆max =
maxa∈Ω{µa − µa∗}, L = maxa |a|.

Proof outline for Theorem 2: Compared with CLCB-JPBS
analysis, the difference in the proof for CULCB-JPBS is that
we divide sub-optimal arms into two types:

(1) At least one link in the sub-optimal arm does not share
the same link with optimal arm.

(2) All links in the sub-optimal arm shares the same link
with the optimal arm (but some beam(s) are different). We
define the event E ′:

E ′ def
=

|ν̂l(t)− νl| ≤

√
2 log(T )

Ml(t)
+

DH

DL

√
log(T )

Ml(t)
, ∀l, t

 .

The high-level idea of the proof is as follows:
(1) We bound the probability that event E ′ does not happen

using Hoeffding inequality.
(2) We bound the expected number of time steps when

at least one link in the selected arm does not belong to the
optimal arm’s path when the event E ′ holds.



Fig. 2. Transmitter and receiver of a single link.

(3) Lastly, we bound the regret incurred when the algorithm
chooses some sub-optimal arm which shares the exact same
set of links with the optimal arm. The detailed proof is in the
VIII-B.

Remark: Theorem 2 shows that the regret bound depends
on the number of links (instead of the number of combi-
nation of arms and beams). Compared to the CLCB-JPBS
algorithm with a total of N = BE arms (B is the number
of individual arms (beams) in each link), whose regret is
O(L

2BE log(T )∆max

∆2
min

), when DH

DL
≪ B, CULCB-JPBS has a

much better regret. In practice, to determine DH , we can set
a large enough number Cmax for the largest delay, and set the
smallest delay as 1. Then, DH = Cmax − 1. For DL, we can
set a small enough number based on prior experience.

V. EVALUATION

To evaluate our proposed algorithms, we use a combination
of real-world experiments and simulation. We aim to achieve
three goals: (1) Use data collected from real-world experi-
ments to verify the unimodal property of successful packet
delivery probability (PDP) on single mmWave links. (2) Use
a real-world experimental setup with three links to emulate
a multi-hop mmWave network, and evaluate the performance
of our proposed algorithms with the collected data. (3) Use
simulation with larger-scale networks to verify the scalability
of our algorithms.

A. Experimental Evaluation

1) Testbed: We developed a mmWave communication
testbed consisting of several NI USRPs and Tmytek’s
mmWave front-end [30] with a center frequency of 28 GHz
(in the 5G NR bands).

The transmitter (Tx) is a USRP N320 programmable radio
device which operates at 5.2 GHz center frequency. The USRP
N320 is connected to a up/down converter which converts the
generated signal to 28 GHz. Then the signal is transmitted by a
5G beamformer called BBox Lite, which provides 16 antenna
elements for 2-D beamforming. The Half Power Beamwidth
(HPBW) of the beamformer is 25◦, and we set its gain to 10
dB. The transmit beam can be steered horizontally from −45◦
to 45◦ using the TMXLAB Kit [30]. To implement the receiver

(a) Single link setup (b) Multi-hop setup

(c) Single link layout (d) Multi-hop layout

Fig. 3. Experimental setups

(Rx), we use another 5G beamformer to receive the 28 GHz
signal. Another up/down converter converts the signal from 28
GHz down to 5.2 GHz. An Intel AX 210 WiFi card is used
to decode the packets in baseband, and measure the Received
Signal Strength (RSS) and Channel State Information (CSI) of
each packet using standard procedures [31]. All the hardware
devices are controlled by a desktop. The transmitter and
receiver of a single link are shown in Fig. 2.

To configure the USRP and extract packet data from the
AX 210 WiFi card, we use a software tool called PicoScenes
[32], [33]. PicoScenes is a CSI tool built upon many open-
source software libraries. The integrated GUN radio controls
the USRP, so it is compatible with all USRPs that support
GUN radio. PicoScenes is a high-performance software im-
plementation of 802.11 a/g/n/ac/ax standards, which allow us
to fully control the baseband signal and access the complete
physical layer information. We implement the IEEE 802.11ax
standard based on an OFDM system with 234 subcarriers using
PicoScenes. However, due to the limitation of this tool, we
cannot implement a large bandwidth, e.g. 80 MHz and 160
MHz. So we choose 20 MHz bandwidth in all our experiments.

2) Experimental setup: We use two setups in our experi-
ments. Both the first and second setup are employed to verify
the unimodal property of successful packet delivery probability
over the beam space on a single link, whereas the second one
is used for the multi-hop experiment.

Setup 1. Our first setup and layout are shown in Fig. 3(a)
and Fig. 3(c). For the transmit beamforming codebook, we use
a 5◦ angle step which provides 19 different beams. We set the
transmit power to 15 dBm and the antenna gain of Tx to 10
dB. The Rx fixes its beam direction at 0◦ (perpendicular to



its antenna) so that it points toward the Tx, and the antenna
gain is 8 dB, while the Tx steers its beam. Both Tx and Rx
are placed 1.5m above the ground (to avoid blockage) and
the distance between them is 5m. The Tx sends 10,000 100B-
long packets under each beam with a 5ms interval between
packets. For each Tx beam and each transmitted packet, we
record whether the packet is received successfully or not (1/0)
(which means it passes CRC check after error correction), and
only when it is successful, CSI/RSS values are extracted.

Setup 2. To emulate a multi-hop mmWave network, we first
create a three link topology in the lab (a single-hop path and
a two-hop path), and then collect over-the-air datasets from
all three links. The second setup and layout are shown in Fig.
3(b) and Fig. 3(d). The setting for each node is similar to
Setup 1. Since it is difficult to implement the online learning
algorithms in real-time in our existing testbed (which requires
real-time feedback and control), we collect over-the-air packet
data offline (sequentially for each link) and simulate the online
algorithms in Matlab. The data collection procedure for each
link is the same as the single-link setup (we obtain 10,000
packet delivery success/failure results for each beam of each
link). We calculate the average successful packet delivery rate
from 10,000 packets as the ground truth for each link and
beam. Then, we split all the link-beam’s dataset into 3 groups,
each of them contains 3300 data records. To simulate an
online algorithm using each data group, in each round, the
algorithm chooses a set of link (path) and beam combinations
(individual arms), and “transmits” a packet on each chosen
link and beam pair until it is successfully received (if the
delivery fails, we regard the next packet in the dataset as a
retransmission). The link delay (instantaneous reward) in this
round is calculated as the number of time slots (each of them
is 5ms+packet transmission time) taken to successfully deliver
that packet. Then the algorithm updates the empirical means
for all individual arms and picks another set of link-beam pairs
in the next round.

We compare the performance of our proposed CULCB-
JPBS algorithm with three baselines: (1) our proposed CLCB-
JPBS; (2) Learning with linear rewards (LLR) [23], which is a
well-known combinatorial UCB algorithm without considering
unimodal property, and we define each link-beam pair as an
individual arm; (3) Offline training based on Unimodal Beam
Alignment (UBA) [11]. In phase 1, we run UBA algorithm for
each link for T rounds (with probing packets). In phase 2, we
compute an optimal path using the empirical average delays
of optimal beams for each link (learned from phase 1), and
we commit to using that path and beam combination.

3) Experimental Results: From the single-link datasets
(collected from both setups), we show the average SNR and
packet delivery probability (PDP) over 10,000 packets as a
function of transmit beam angle in Fig. 4. Note that, in Fig. 4
SNR of a few angles are missing since no packets are received
in those directions. Fig. 4 (b) shows that the PDP of each link
also have similar trends. The above observations are consistent
with our theoretical analysis in Lemma 1. In addition, when the
maximum SNR/PDP is achieved, the beam angle is roughly the
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Fig. 5. Results from experimental data (setup 2), and pure simulation: average
cumulative regret, number of received packets and average end-to-end delay

angle of the LoS direction. Note that, the Unimodal property
of PDP over the beam space also implies the same for expected
link delay.

For algorithm evaluation, Fig. 5 (a) shows the cumulative
regret of the joint path and beam selection algorithms under
Setup 2 (averaged over three runs, one for each data group).
From Fig. 5 (a), we can see that CULCB-JPBS has lower
regret than the CLCB-JPBS and LLR algorithm. This result
matches our expectation since the Unimodal property of



Fig. 6. Topology of the multihop mmWave network used in simulation.

expected delay over the beam space helps the algorithm to
converge faster (consistent with our theoretical analysis). In
addition, the cumulative regret of CLCB-JPBS is smaller than
the LLR algorithm. This is because the exploration term for
CLCB-JPBS uses an aggressive confidence bound for selecting
arms, while LLR adopts a conservative confidence bound.
Meanwhile, Figs. 5 (a) also shows the regret performance (in
the online phase) using the UBA algorithm for training. The
number of probing rounds in UBA for each link is chosen
as T = 100, 500, 1000, and we average over 3 runs. We
can see that the average cumulative regret grows linearly
with the round. This is because running T rounds of UBA
is similar to the explore-then-commit strategy [34], where
a sub-optimal path-beam combination may be selected and
committed to. Although its cumulative regret increases slower,
it ultimately surpasses the online algorithms with time. Note
that, offline training based on UBA incurs significant overhead
because no data is transmitted during the training phase (for
T rounds). Our CULCB-JPBS algorithm do not incur any
training overhead as data packets are transmitted in each
round.

To further examine the advantage of our proposed algorithm
over baselines using concrete performance metrics, we eval-
uate the average number of received packets vs. time slots
and average end-to-end (E2E) delay vs. round. From Figs. 5
(c) (e), we can see that CLCB-JPBS and LLR result in overall
larger E2E delays and smaller number of received packets over
time, while our CULCB-JPBS’s E2E delay converges to the
optimal value quickly after about 200 rounds (in setup 2, the
direct link is the optimal path), and the number of received
packets almost increases linearly from the beginning (which
also implies high reliability).

B. Simulation-based Evaluation

To evaluate the performance of the algorithms over larger
scale networks, we perform simulations using MATLAB. We
generate a topology with 14 nodes randomly distributed within
a square area of 50 m× 50 m. For the wireless channel
model, we adopt the 3GPP Standard probabilistic LOS model
[18], [29], which is often used in mmWave communication.
Based on the 3GPP TS 38.101-1/2 standard [35], the system
is assumed to operate at 28 GHz carrier frequency, has a
bandwidth of 100 MHz, and we use 64-QAM modulation. For
each link, there are a total of 16 beams and we only consider

Tx beam selection (each beam’s width is 5 degrees and the
step between adjacent beams’ angles is 10◦).

Simulation Results. Figs. 5 (b) (d) (f) show our simulation
results. We can see that CULCB-JPBS still has better per-
formance than other algorithms, which is consistent with the
results from Setup 2. We can also see that LLR incurs much
higher regret than other algorithms. This is partly because its
regret depends on L3, where L, the length of the longest path
is 5 (Compared to L = 2 in Setup 2), and it does not exploit
unimodality structure.

VI. DISCUSSIONS

A. Extensions

Our algorithm can be easily extended to handle channel
dynamics due to blockage or UE mobility. The basic idea is
to detect changes of each link’s channel state in an online
manner, and reset the CULCB-JPBS algorithm once that
happens. For example, a simple method is to detect a sudden
decrease of link quality indicators (after an enough number of
rounds), such as link SNR measurement (this is also adopted
by [11]). We can also adopt quick change-point detection
schemes (such as CUSUM [26], and others [19]), and integrate
them with CULCB-JPBS. As CULCB-JPBS converges fast,
it can find the optimal (or near-optimal) combinatorial arm
in a few hundred rounds (i.e., less than one second). If the
blockage or UE location changes slower than this time scale,
it incurs minimal additional regret. As an ongoing work, we
are currently studying efficient JPBS algorithms in the piece-
wise stationary setting and analyzing their regret bounds.

B. Other Applications

Our algorithm is general enough to be applied to any
combinatorial bandit problem with unimodal structure. For in-
stance, in navigation applications in intelligent transportation,
a vehicle driving from a source to destination has multiple
route choices (paths), each consisting of several road segments
(links). For each given link l, it can further choose a travel
speed vl. A combination of a link and speed corresponds to an
individual arm. The expected cost for each link can be defined
as follows: rl = e(vl) + c · p(vl), where e(vl) is a function
representing the efficiency of travel (e.g., delay), which is a
decreasing function of speed, and p(vl) denotes a safety cost
which is usually an increasing function of speed [?], and c is
a coefficient. Thus, each individual arm’s expected cost has
the unimodal structure.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the CULCB-JPBS algorithm
for delay-optimal online joint path and beam selection for
multi-hop mmWave networks. To address the scalability issue
of combinatorial bandit algorithms under a large number
of beams, our algorithm exploits the Unimodal property of
expected reward over the beam space for each link. Compared
with existing algorithms, we show that the cumulative regret
bound of CULCB-JPBS has no dependence on the number of
beams per link. We empirically evaluate our algorithm via both



experiments and simulations, which significantly outperforms
existing algorithms in terms of regret and E2E delay.

There are many interesting questions for future work: (1)
We will extend to joint beam selection on both Tx and Rx
sides, for which the bi-variate expected cost function has 2-D
unimodal property. (2) Currently our algorithm only gathers
feedback from the chosen links and beams. Allowing more
feedback, such as periodically probing other links/beams, may
speed up the learning, but also brings more overhead. We can
study the tradeoff between feedback overhead and learning
performance. Note that [24] also adopted a probing based
online routing method. (3) We will consider different channel
conditions, such as multi-path channels, where the reward
functions are multimodal. (4) Our current algorithm is cen-
tralized. We will design distributed online learning algorithms,
such as reinforcement learning using the Unimodal property.

VIII. APPENDIX

A. Proof of Theorem 1

Proof. Let G =
{
(l, b) : l ∈ E , b ∈ B

}
be the collection of

(link, beam). |G| = BE. Recall that we have defined I(E) = 1
if event E happens, I(E) = 0 otherwise. cases must happen: 1)
an optimal arm a∗ is played; 2) a non-optimal a arm is played.
In the first case, (T̂g(t))g∈G will not be updated. When a non-
optimal arm is selected, there must exist at least one g ∈ a
such that g = argming∈a mg(t). If there is only one such
arm, T̂g(t) is increased by 1. If there are multiple such action,
we arbitrarily pick one g, and increment T̂g by 1. Meanwhile,
We define ĝ(t) = g to be that T̂g(t) is increased by one (this
implies that individual arm g is selected at time step t).

We define event E as ∩g∈G{|θ̂g(t−1)−θg| ≤
√

2 log(T )
mg(t−1)},

where T̂g(t) ≤ mg(t). On event E , we know that

UCBt(a) =
∑
g∈a

{θ̂g(t− 1) +

√
2 log(T )

mg(t− 1)
}

onE
≤

∑
g∈a

{θg + 2

√
2 log(T )

mg(t− 1)
} = Vt(a). (9)

On event E , we define I(T̂g(t) ≥ lt, ĝ(t) = g) (lt =
ming∈a(t) mg(t)).

Pr(T̂g(t) ≥ lt, ĝ(t) = g) = Pr(T̂g(t) ≥ lt, ĝ(t) = g, E)
+Pr(T̂g(t) ≥ lt, ĝ(t) = g, Ec)
≤ Pr(T̂g(t) ≥ lt, ĝ(t) = g, E) + Pr(Ec), (10)

Next, we will prove the event E1:(T̂g(t) ≥ lt, ĝ(t) = g, E) is
impossible to happen. We need to derive UCBt(a(t)) ≤ µa∗

when event E happens. First, we know from Eq. (9) from
Eq. (9) that UCBt(a(t)) ≤ Vt(a(t)), therefore,

UCBt(a(t)) ≤ Vt(a(t))

=
∑

g∈a(t)

{θg + 2

√
2 log(T )

mg(t)
}

= µa(t) + 2
∑

g∈a(t)

√
2 log(T )

mj(t)

(a)

≤ µa(t) + 2
∑

j∈a(t)

√
2 log(T )

lt
, (11)

where the last inequality is from the observation that, accord-
ing to the definition of E1, ∀g ∈ a(t), mg(t) ≥ lt.

Then, we have,

Vt(a(t)) ≤ µa(t) + 2
∑

j∈a(t)

√
2 log(T )

lt

(a)

≤ µa(t) + 2L

√
2 log(T )

lt
(12)

Where inequality (a) is based on the largest size of arm
is L. We set lt ≥ l = 8L2 log(T )

∆2
min

where ∆min =

mina∈Ω,a̸=a∗{µa∗ − µa}.

µa∗ − µa(t) − 2L

√
2 log(T )

lt

≥ µa∗ − µa(t) − 2L

√
2 log(T )

l

= µa∗ − µa(t) − 2L

√√√√ 2 log(T )
8M2 log(T )

∆2
min

≥ 0, (13)

So, it is impossible to select arm a(t) because Vt(a(t)) ≤ µa∗ .
For the second term in Eq. (10), if event E does not hold, it

means that at least one individual arm does not hold a certain
threshold. We assume that all arm contains L individual arm.
The statement becomes: if event E does not hold, it means
that at least one individual arm g satisfies |θ̂g(t− 1)− θg| ≥√

2 log(T )
mg(t)

.

Pr(Ec) = Pr(∃g ∈ G, |θ̂g(t− 1)− θg| ≥

√
2 log(T )

mg(t)
)

=
∑
g∈G

Pr(|θ̂g(t− 1)− θg| ≥

√
2 log(T )

mg(t)
)

(a)

≤ |G|T−4, (14)



Inequality (a) is based on the Lemma 1 in useful facts (31).
We define τ is the first time slot that T̂g(t) ≥ l. Then, the
expectation of T̂g(t),

E[T̂g(t)] ≤ l +

T∑
t=τ+1

Pr(T̂g(t) ≥ l, ĝ(t) = g)

(a)

≤ l +

T∑
t=τ+1

Pr(T̂g(t) ≥ l, ĝ(t) = g,E) +

T∑
t=1

Pr(Ec)

(b)

≤ l +

T∑
t=τ+1

Pr(T̂g(t) ≥ l, ĝ(t) = g,E) +O(|G|)

(c)

≤ l + |G|, (15)

where inequality (a) is from Eq. (10); inequality (b) is from
Eq. (14); inequality (c) is from Eq. (13) (it is impossible to
select arm a(t) because Vt(a(t)) ≤ µa∗ ).

The regret of CUCB-JPBS is,

E[R(T )] =
∑

µa<µa∗

∆aE[Ta(T )]

≤ ∆max

∑
µa<µa∗

E[Ta(T )] = ∆max

BE∑
i=g

E[T̂g(T )]

≤ ∆max{BEl +O(BEM)}

= ∆max{BE
8L2 log(T )

∆2
min

+O(BEL)}, (16)

Where l can ensure all super arm have sufficient sampling.

B. Proof of Theorem 2
Proof. For each link l, let E be the collection of link. Recall that we
have defined I(E ′) = 1 if event E ′ happens, I(E ′) = 0 otherwise.
We define Rp as the link set Θ̃ is the set of Rp. At each time-
slot after the initialization period, one of the two cases must happen:
1) La(t) = La∗ ( a(t) shares the same link with optimal arm a∗

is played); 2) La(t) ̸= La∗ (At least one link does not same with
optimal arm a∗ ) is played. We define Ml(t) as follows: In the first
case, (Ml(t))l∈E will not be updated. When Rp is selected, there
must exist at least one l ∈ Rp such that l = argminl∈Rp ml. If
there is only one such link, Ml(n) is increased by 1. If there are
multiple such action, we arbitrarily pick one l, and increment Ml by
1.

We define event E ′ as ∩l∈E{|θ̂l(t − 1) − θl| ≤
√

2 log(T )
Ml(t−1)

+

DH
DL

√
1

Ml(t)
}. On event E ′, we know that

UCBt(l(t)) =
∑
l∈Rp

{ν̂l(t− 1) +

√
2 log(T )

Ml(t− 1)
+

DH

DL

√
log(T )

Ml(t)
}

onε′

≤
∑
l∈Rp

{νl + 2

√
2 log(T )

Ml(t− 1)
+

DH

DL

√
log(T )

Ml(t)
}

= Vt(l(t)). (17)

On event E ′, we define ê(t) to be the unique link l ∈ E such that
T̂l(t) gets incremented at time step t, l̂(t) = minl∈Rl ml(t).

Pr(T̂l(t) ≥ l̂(t), ê(t) = l)

= Pr(T̂l(t) ≥ l̂(t), ê(t) = l, E ′) + Pr(T̂l(t) ≥ l̂(t), ê(t) = l, E ′c)

≤ Pr(T̂l(t) ≥ l̂(t), ê(t) = l, E ′) + Pr(E ′c), (18)

Next, we will prove the probability of event E ′
1 happens: Pr(T̂g′(t) ≥

l̂(t), ê(t) = l, E ′) is impossible to happen. We need to derive
UCBt(l(t)) ≤ µa∗ when event ε′ happens. First, we know from
Eq. (17) that UCBt(l(t)) ≤ Vt(l(t)), therefore,

UCBt(l(t)) ≤ Vt(l(t))

=
∑

l∈Rl(t)

{θl + 2

√
2 log(T )

Ml(t)
+

DH

DL

√
log(T )

Ml(t)
}

= µRl(t)
+ 2

∑
l∈Rl(t)

{

√
2 log(T )

Ml(t)
+

DH

DL

√
log(T )

Ml(t)
}

(a)

≤ µl(t) + 2
∑

l∈Rl(t)

{

√
2 log(T )

l′t
+

DH

DL

√
log(T )

l′t
} (19)

According to the definition of E ′
1, we know that ∀l ∈ Rl(t), Ml(t) ≥

l̂(t). Then, when T > 3, we have,

Vt(l(t))

≤ µl(t) + 2
∑

l∈Rl(t)

{
√

2 log(T )

l̂(t)
+

DH

DL

√
log(T )

l̂(t)
}

≤ µl(t) + 2(1 +
DH

DL
)
∑

l∈Rl(t)

√
2 log(T )

l̂(t)

(b)

≤ µl(t) + 2(1 +
DH

DL
)L

√
2 log(T )

l̂(t)
, (20)

Where inequality (a) is based on the fact that 2 log(T ) ≥ 1 when T ≥
3. Inequality (b) is based on the largest length of super arm is L. We

set l̂(t) ≥ l′ =
8(1+

DH
DL

)2L2 log(T )

∆′2
min

where ∆′
min = minp∈Θ̃ µp∗−µp.

µp =
∑

l∈p νl, and p∗ is the route of the optimal (route, beam)
combination.

µp∗ − µl(t) − 2(1 +
DH

DL
)L

√
2 log(T )

l′t

≥ µp∗ − µl(t) − 2(1 +
DH

DL
)L

√
2 log(T )

l′

= µp∗ − µl(t) − 2(1 +
CH

CL
)L

√√√√√ 2 log(T )

8(1+
DH
DL

)2L2 log(T )

∆′2
min

≥ 0, (21)

So, it is impossible to select link set Rl(t) because UCBt(l(t)) ≤
Vt(l(t)), Vt(l(t)) ≤ µa∗ and µp∗ ≤ UCBt(p

∗). Then, we have
UCBt(l(t)) ≤ UCBt(l

∗)
For the second term, if event E ′ does not hold, it means that at

least one link does not hold a certain threshold. We assume that the
largest number of element in link set Rp is L links. The statement
becomes: if event ε′ does not hold, it means that at least one link is
|θ̂l(t− 1)− θl| ≥

√
2 log(T )
Ml(t)

+ DH
DL

√
log(T )
Ml(t)

.

Pr(εc)

=
∑
l∈E

Pr(∃l ∈ E, |θ̂l(t− 1)− θl| ≥

√
2 log(T )

ml(t)
)

=
∑
l∈E

Pr(|θ̂l(t− 1)− θl| ≥

√
2 log(T )

Ml(t)
+

DH

DL

√
1

Ml(t)
)

(a)

≤ LT−1, (22)



Inequality (a) is based on the fact the result of Eq. (40) in [36].
L = maxa |a|. We define τ ′ is the first time slot that T̂l(t) ≥ l′.
Then, the expectation of T̂l(t),

E[T̂l(t)] ≤ l′ +

T∑
t=τ ′

Pr(T̂l(t) ≥ l′, ê(t) = l)

≤ l′ +

T∑
t=τ ′

Pr(T̂l(t) ≥ l′, ê(t) = l, E) +

T∑
t=τ ′

Pr(εc)

≤ l′ +

T∑
t=τ ′

Pr(T̂l(t) ≥ l′, ê(t) = l, E) +O(L)

≤ l′ +O(E), (23)

We decompose the expected regret E[R(T )] into the sum of two
terms E[R1(T )] and E[R2(T )], where

E[R1(T )] = E[

T∑
t=1

I(∃l ∈ Rl(t) : l /∈ Rp∗)(µp∗ − µl(t))],

is the regret of the selected arm at least one link does not belong to
the optimal arm, and

E[R2(T )] = E[

T∑
t=1

I(∀l ∈ Rl(t) : l ∈ Rl∗)(µl∗ − µl(t))], (24)

is the regret in rounds in which the sub-optimal arm has all the same
links as the optimal arm.

We bound the two terms respectively. For E[R1(T )],

E[R1(T )] ≤ ∆max

∑
µp<µa∗

E[Tp(T )]

= ∆max

E∑
l=1

E[T̂l(T )] ≤ ∆max{El′ +O(E2)}

≤ ∆max{E
8(1 + DH

DL
)2L2 log(T )

∆′2
min

+O(E2)}

(a)

≤ ∆max{E
8(1 + DH

DL
)2L2 log(T )

∆2
min

+O(E2)}, (25)

where ∆min = mina∈Ω,a̸=a∗{µa∗ −µa}, and Inequality (a) is based
on the fact that ∆′

min ≥ ∆min. ∆max = maxa∈Ω{µa∗ − µa}. A1

is the arm set that shares the same link with optimal arm a∗

Next, we will bound E[R2(n)]. In this scenario, the only difference
is the beam. bl is the selected beam in link l, ∆bl is the regret between
optimal beam and selected beam bl and B1 is the individual arm set
for bl. Here,we consider that link l is the one part of link of optimal
arm a∗.

E[R2(T )] = E[

T∑
t=1

I(∀l ∈ Rl(t) : l ∈ Rl∗)(µl∗ − µl(t))]

=
∑

a∈A1

∆aE[Ta(T )] =
∑

a∈A1

∑
(l,b)∈Aa

∆bl

E[Ta(T )]
(a)
=

∑
bl∈B1

∑
a∩bl ̸=∅,a∈A1

∆blE[Ta(T )]

(b)
=

∑
bl∈B1

∆blE[Tbl(T )], (26)

The operation of Eq. (a) is to group all the sub-optimal arm a
that contains bl. Eq. (b) is based on the fact that the summation of
number of time for sub-optimal arm which contains bl equals to the
total selected time for individual arm bl. We can divide the regret

analysis into each link. For each link l, the regret is (Theorem 2 in
[36])

E[Rl(T )] ≤ O

(
DH

(DL)2
log(8T )

)
. (27)

The regret of the selected route which shares the same link with
optimal arm is

E[R2(T )] ≤
∑
l∈a∗

O

(
DH

(DL)2
log(8T )

)
(a)

≤ O

(
L

DH

(DL)2
log(8T )

)
. (28)

Inequality (a) is based on the fact that the route length cannot exceed
L. Combining 25 and 28, we have

E[R(T )] = E[R1(T )] + E[R2(T )] ≤ O

(
E

DH

(DL)2
log(8T )

)
+∆max{L

8(1 + DH
DL

)2L2 log(T )

∆2
min

+O(E2)}. (29)

C. Useful Facts

Lemma 2. For any fixed individual arm g ∈ G and any time
step t in the learning process,

Pr(|θ̂g(t− 1)− θg| ≥

√
2 log(T )

mg(t)
) ≤ 2

T 4
, (30)

Proof. Applying Chernoff–Hoeffding Bound, we can get

Pr(|θ̂g(t− 1)− θg| ≥

√
2 log(T )

mg(t)
)

≤ Pr(mg(t)θ̂g(t− 1)−mg(t)θg ≥
√

2mg(t) log(T ))

+Pr(mg(t)θ̂g(t− 1)−mg(t)θg ≤ −
√
2mg(t) log(T ))

≤ e−4 log(T ) + e−4 log(T ) =
2

T 4
, (31)
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D. Algorithm

Algorithm 2 CULCB-JPBS
1: Input: DH , DL

2: For each link l: ν̂l(0) = 0,Ml(0) = 0,xl
A = 0,xl

B = 1
ϕ2 ,

xl
c = 1, precision schedule (ϵ1, . . . , ϵS), sl = 1 for all

l ∈ E.
3: Same as lines 2 to 8 of Alg. 1 for initialization.
4: for link l ∈ E do
5: Ml(t) =

∑
b∈B ml,b(t)

6: ν̂l(t) =
∑

b∈B
ml,b(t)
Ml(t)

θ̂l,b(t)
7: end for
8: for t = BE · · ·T do
9: t = t+ 1

10: Select a link vector l(t) = argminl∈Θ̃

∑
l∈Rl(t)

(ν̂l(t)−√
2 log(t)
Ml(t)

− DH

DL

√
log(t)
Ml(t)

).
11: for each link l in the chosen path Rl(t): do
12: if there are more than one discrete beam j such that

j/B in [xl
A, x

l
C] then

13: In a round-robin manner, select one point in
{xl

A, x
l
B , x

′l
B , x

l
C} and choose beam bl(t) accord-

ing to Alg. 3, receive cost Xl,bl(t)(t)
14: if all of {xl

A, x
l
B , x

′l
B , x

l
C} are selected 2

ϵ2sl
log(8T )

times then
15: sl = sl + 1; let x̂l be the point with smallest

empirical mean cost in this phase
16: If x̂l ∈ {xl

A, x
l
B} then eliminate interval

(x′l
B , x

l
C ] and let xl

C = x′l
B ,

17: else eliminate interval [xl
A, x

l
B) and let xl

A =
xl
B .

18: Let x′l
B = xl

B − 1
ϕ2 (x

l
B − xl

A) if
xl
B − xl

A > xl
C − xl

B , and x′l
B = xl

B +
1
ϕ2 (x

l
C − xl

B) otherwise
19: end if
20: else
21: Break
22: end if
23: Select the only discrete beam j such that j/B in

[xl
A, x

l
C ], let bl(t) = j and receive cost Xl,bl(t)(t)

24: end for
25: Update empirical mean costs and counts for all links:

(ν̂l(t),Ml(t)) =


(
ν̂l(t−1)·Ml(t−1)+Xl,bl(t)

(t)

Ml(t−1)+1 ,

Ml(t− 1) + 1), link l in Rl(t),

(ν̂l(t− 1),Ml(t− 1)),

link l not in Rl(t).

26: end for

https://tmytek.com
https://ps.zpj.io/#
https://realworldml.github.io/files/cr/paper31.pdf


Algorithm 3 Cost sampling for any continuous point x′

1: Input: x′

2: Output: a stochastic cost of conditional mean f(x′)
(Eq. (8))

3: j = ⌊Bx′⌋
4: set

b =

{
j with probability j + 1−Bx′

j + 1 otherwise,

5: r ← cost of pulling beam b
6: return r
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