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Abstract—Searchable encryption is a promising technique
enabling meaningful search operations to be performed on
encrypted databases while protecting user privacy from untrusted
third-party service providers. However, while most of the existing
works focus on common SQL queries, geometric queries on
encrypted spatial data have not been well studied. Especially,
circular range search is an important type of geometric query
on spatial data which has wide applications, such as proximity
testing in Location-Based Services and Delaunay triangulation in
computational geometry.

In this paper, we propose two novel symmetric-key searchable
encryption schemes supporting circular range search. Informally,
both of our schemes can correctly verify whether a point is inside
a circle on encrypted spatial data without revealing data privacy
or query privacy to a semi-honest cloud server. We formally
define the security of our proposed schemes, prove that they are
secure under Selective Chosen-Plaintext Attacks, and evaluate
their performance through experiments in a real-world cloud
platform (Amazon EC2). To the best of our knowledge, this
paper represents the first study in secure circular range search
on encrypted spatial data.

I. INTRODUCTION

Motivation. Geometric range query is an important and

common type of query in spatial databases, where spatial

locations are represented as data points in a Euclidean space

and queries can be described as geometric objects such as

rectangles, circles, etc. Especially, circular range search aims

at finding data points (which could be multi-dimensional)

that are located inside a circular range, as shown in Fig. 1.

It has wide applications in geographic information systems,

computer-aid design and computational geometry [1].

For example, in Location-Based Service (LBS), a user can

perform proximity testing [2] (e.g., finding friends, restaurants,

WiFi hotspots within a certain distance based on his/her cur-

rent location) by running circular range search on a geographic

map; similarly, a Mac-OS device can detect another Mac-

OS device within approximately 30 feet (9 meters) with an

application named AirDrop in order to easily share large data

files; a mobile user can leverage the feature of friend radar

in WeChat, which is an instant message app with 438 million

active users as August 2014, to locate other WeChat users that

are close to him/her by carrying out circular range search; in

computational geometry, verifying whether a triangulation T
of a point set S is a Delaunay triangulation can be done by

performing circular range search to see if any point from S is

inside any circumcircle of a triangulation of T [3].

On the other hand, with the emergence of cloud computing,

more and more companies/service providers begin to outsource

their large datasets to third-party cloud service providers

(CSPs), such as Google and Amazon, to reduce their local cost

Fig. 1. A set of points in a plane, and a circular range query finds the points
that inside a circle.

on data management and data storage. However, this raises

serious privacy concerns from the users of those companies

because the CSPs may not be fully trusted in handling their

data, and there have been numerous data breach incidents

in the past [4]. Foursquare, a well-known LBS company

outsources its location database containing all their users’

geographic location information to Amazon Web Services

(AWS). Meanwhile, it is common for a Foursquare user to

run proximity-based friend finding over her own friend list

(all stored in the cloud). Considering geographic location

information are sensitive to not only users but also to the

company (due to legal and commercial issues), in this example

both data privacy (i.e., the locations of users in the database)

and query privacy (i.e., the location of the querier) should

be protected from AWS. Another example where preserving

privacy against a third-party CSP is needed, is a hospital that

outsources the database of its patients’ private locations to a

public cloud. A doctor from this hospital may need to query

those spatial data in order to locate and monitor the patients

that are close to him/her within a certain range in order to

provide emergency healthcare.

A direct approach to relief users’ concerns on the privacy

leakage of outsourced spatial data is to let the company encrypt

its database with traditional encryption (e.g., using AES).

Unfortunately, it makes the realization of any data search

functionality a challenging task. As a result, many searchable

encryption schemes [4]–[12] have been introduced to allow

users to perform meaningful search on encrypted data without

revealing data privacy nor query privacy to the cloud server.

However, most of the existing studies in searchable encryp-

tion [4]–[12] only focus on common SQL queries, such as

Boolean keyword search, which are not suitable for supporting

geometric range queries [1] on spatial data. Although the

extensions of comparison search in several recent solutions

[13]–[17] can support rectangular range search (i.e., retrieving

points that are inside a rectangle), none of the existing search-

able encryption schemes has particularly studied circular range

search.
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Our Contributions. In this paper, we propose two search-

able encryption schemes particularly supporting circular range

queries on encrypted spatial data. With our proposed schemes,

a semi-honest cloud server is able to correctly verify whether

a point is inside a circle in the ciphertext domain. Informally

speaking, except knowing the Boolean search result of a

circular range query over encrypted spatial data (i.e., inside

or outside a circle) and radius pattern (i.e., the radius of

each circular range query), the cloud server is not able to

reveal additional privacy about data or queries. Our main

contributions are summarized as follows:

1) We first design a symmetric-key Circle Predicate En-

cryption (CPE) based on an existing Predicate Encryp-

tion [18] (named as SSW in this paper). This CPE is

able to predicate whether a point is on the boundary of a

circle on encrypted spatial data, and it will be leveraged

as a stepping stone for our later design in circular range

search.

2) We formally describe the definition and security of

symmetric-key Circular Range Searchable Encryption

(CRSE), and propose two novel CRSE schemes (named

CRSE-I and CRSE-II respectively) to support circular

range search on encrypted spatial data. The main dif-

ference between these two proposed schemes is that the

first one is stronger in terms of privacy protection, while

the second one is much efficient and scalable. To the

best of our knowledge, our work represents the very

first study in secure circular range search on encrypted

spatial data.

3) We prove our proposed schemes are secure under Selec-

tive Chosen-Plaintext Attacks (SCPA) [19] in terms of

data privacy and query privacy. In addition, we conduct

experiments in Amazon EC2 to evaluate the performance

of our schemes in real cloud platform.

II. RELATED WORK

In this section, we particularly describe some research that

are closely related to circular range search on encrypted data.

Rectangular Range Search. Rectangular range search,

which retrieves all the points inside a rectangle, is an alter-

native approach to conduct circular range search, even in the

plaintext domain (e.g., generating a minimal rectangle that

covers all the area of a circle) [1]. However, this alternative

introduces many false positives, where the false positives

indicate the points that are inside the minimal rectangle but

are not inside the original circle.

Multi-dimensional (conjunctive) range searchable encryp-

tion schemes [13]–[17] essentially provide solutions support-

ing rectangular range search. Specifically, both Boneh et al.

[13] and Shi et al. [14] designed public-key schemes which

are able to handle rectangular range queries with linear search.

Moving a step forward, several schemes [15]–[17] proposed to

achieve faster-than-linear rectangular range search by utilizing

tree structures, such as R-trees [16], [17] or kd-trees [15].

Recent research [11], [12] supporting range queries can also

be extended to operate rectangular range search on encrypted

data. In addition, simply using Order-Preserving Encryption

[20], [21] with multiple dimensions is also another option to

enable rectangular range search on encrypted spatial data.

Nearest Neighbor Search. Nearest neighbor search or k-

nearest neighbor search is to find the nearest point (or k-

nearest points) for a given query point by evaluating Euclidean

distance. Since the query point and the results of nearest

neighbor search can also form a circle (where the query point

is the center, and the distance between the query point and

the nearest neighbor is the radius), it seems nearest neighbor

search is similar as circular range search.

However, the main difference is that nearest neighbor search

pre-defines the number of effective search results (i.e., 1 or k)

in the generation of each query without providing a particular

radius; while circular range search needs to specifically define

a radius in each query (before search) without considering the

number of effective search results. Therefore, nearest neighbor

search is different from circular range search, even in the

plaintext domain.

Nearest neighbor search or k-nearest neighbor search over

encrypted data was first studied in [22], which achieves linear

search and is vulnerable under Chosen-Plaintext Attacks. Its

subsequent works focus on improving search efficiency [23] by

using data structures or minimizing client-server interactions

[24] with two non-colluding servers.

Private Proximity Testing. Some recent works [2], [25],

[26] considering private proximity testing directly between two

users are also related to circular range search over encrypted

spatial data we study in this paper. Specifically, with private

proximity testing, a user Alice is able to test whether another

user Bob is within some certain distance without revealing any

user’s specific location to each other.

In these schemes [2], [25], [26], the private computation

and comparison of the distance between Alice and Bob are

generally achieved by using Secure Two-Party Computation

[27] (e.g., Garbled Circuits [26]), which inevitably introduce

multiple rounds of interactions between the two parties. While

our work is targeting a design with a minimal one-round client-

server interaction (see some further discussions in the next

section). Besides, the traditional two-user setting (or even with

an additional use of an oblivious computation server [2]) of

these schemes is different from our model. Specifically, our

model is a standard searchable encryption model, which in-

volves a cloud server storing encrypted datasets but necessarily

revealing Boolean search results (i.e., this cloud server in our

model is not required to be totally oblivious).

III. PROBLEM STATEMENT

System Model. Our system model in Fig. 2 is a standard

searchable encryption model, which includes a data owner, a

data user and the cloud server. A data owner (e.g., a company)

stores its dataset in the cloud server to reduce local cost on data

storage and hardware. A data user (e.g., a user of the company)

would like to search over outsourced spatial data in the cloud.

The cloud server provides data storage and search services.
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Data Owner

Cloud Server

Encrypted 

Data Records

Latitude Longitude

22.3130 114.0460

39.9138 116.3916

31.2333 121.4718

Search 

AlgorithmCenter = (22.3130, 114.0420)
Radius = 0.0050

1. Encrypted Data

4. Search Token

5. Results

Data User

2. Search Query 3. Search Token

Fig. 2. The system model with a data owner, a data user and the cloud server

Note that the data owner itself always has the capability to

search over outsourced spatial data.

In this study, we focus on circular range search, which

means each data record in the outsourced spatial dataset can

be represented as a point while a search query is a circle.

A circle is defined by its center and radius. The purpose of

circular range search is to find points that are inside a given

query (as described in Fig. 1).

Due to privacy concern (e.g., legal and commercial issues),

the data owner encrypts its dataset and only outsources the

encrypted dataset to the cloud server; and a client (i.e., a

data user or the data owner) only submits each search query’s

encrypted form (i.e., a search token) to the cloud server. The

data owner manages the secret keys for encrypting data and

generating search tokens. A data user trusts the data owner,

but not the cloud server. The cloud server is semi-honest (i.e.,

honest-but-curious) [4], which means it provides reliable data

and search services, but it is curious about the content of

data records outsourced by the data owner and the content

of circular range queries submitted by a client.

A Straightforward Design. The essential problem of solv-

ing circular range search is to evaluate whether a data point

is inside a query circle. Mapping to the general logic in the

plaintext domain, a straightforward design for circular range

search on encrypted spatial data is to compute the distance

between two points (i.e., a data point and the center of the

query circle), and then compare this distance with the radius

of the query circle in the ciphertext domain. Although current

(efficient) cryptographic primitives can evaluate the above

two operations in the ciphertext domain independently (e.g.

Additively Homomorphic Encryption [28] for computation and

Order-Preserving Encryption [20], [21] for comparison), they

are not able to evaluate these two operations continuously in

the ciphertext domain. As a result, the straightforward design

with this compute-then-compare logic on encrypted spatial

data will inevitably introduce heavy interactions between a

client and the cloud server or the impractical assumption of

two (or more) non-colluding servers. These limitations also

exist in the current searchable encryption schemes supporting

nearest neighbor search [23], [24], which requires a similar

compute-then-compare process on encrypted data.

In order to avoid these limitations, our design presented

later in this paper is able to support circular range search

without using the compute-then-compare logic. As a result,

a client is able to correctly finish circular range search on

encrypted spatial data with a (minimal) one-round client-

server interaction (i.e., a client submits a search token and

the cloud server returns search results) using a single cloud

server. As a necessary trade-off, our design will leak radius

pattern, which is only a minor leakage (see Sec. IV).

Notations. Before we introduce the formal definition

of a symmetric-key Circular Range Searchable Encryption

(CRSE), we first clarify some notations.

First, we assume the values of points and the centers of

circles in this paper are all integers1. We use ∆w
T to denote

the data space, where w is the number of dimensions and T
is the size of each dimension. Each element in data space ∆w

T

is essentially a w-dimensional point, where the value of this

point in each dimension is within [0, T − 1] (without loss of

generality). For the ease of description, we first assume w = 2
and the size of each dimension is the same (i.e., Tk = T , for

1 ≤ k ≤ w). We will discuss the extension supporting higher

dimensions (i.e., w > 2) in Sec. VI.

Essentially, a data record D in the preceding system model

is a point and a circular range query Q is a circle, where

D ∈ ∆w
T and Q ⊆ ∆w

T . We present a circular range query as

Q = {(xc, yc), R}, where (xc, yc) is the center and R is the

radius of the circle. In the following definition of symmetric-

key CRSE, we use D ∈ Q to denote point D is inside2 circle

Q, and use D /∈ Q to describe point D is outside circle Q.

Definition 1: (Symmetric-Key CRSE). A symmetric-key

CRSE is a tuple of four polynomial-time algorithms Π =
(GenKey, Enc, GenToken, Search) such that:

• SK← GenKey(1λ,∆w
T ): is a probabilistic key generation

algorithm that is run by the data owner to setup the

scheme. It takes as input a security parameter λ and the

data space ∆w
T , and outputs a secret key SK.

• C ← Enc(SK, D): is a probabilistic algorithm run by the

data owner to encrypt a data record. It takes as input a

secret key SK and a data record D, where D ∈ ∆w
T , and

outputs a ciphertext C.

• TK← GenToken(SK, Q): is a probabilistic algorithm run

by the data owner to generate a search token for a given

circular range query. It takes as input a secret key SK

and a circular range query Q = {(xc, yc), R}, where

Q ⊆ ∆w
T , and outputs a search token TK.

• I ← Search(TK, C): is a deterministic algorithm run by

the server to search on encrypted data. It takes as input

a search token TK and a ciphertext C, and returns an

identifier I (e.g., a memory location in the cloud server)

of ciphertext C, if the corresponding data record D ∈ Q;

otherwise, outputs ⊥.

Correctness. We say that the above symmetric-key CRSE

scheme is correct if for all λ ∈ N, all SK output by

1Or floating numbers with fixed digits, such as the ones in Fig. 2, that can
be smoothly converted to integers. The reasons that why floating numbers
with unfixed digits are not supported in our design are explained in Sec. VI.

2For the ease of description, when we mention a point is inside a circle in
the rest of this paper, we indicate that this point is geometrically inside the
boundary of this circle or it is exactly on the boundary of this circle.
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GenKey(1λ,∆w
T ), all D ∈ ∆w

T , all C output by Enc(SK, D),
all Q ⊆ ∆w

T , all TK output by GenToken(SK, Q),

• If D ∈ Q: Search(TK, C) = I;

• If D /∈ Q: Pr[Search(TK, C) =⊥] ≥ 1− negl(λ);

where negl(λ) denotes a negligible function [29] in λ.

Informally, the above correctness indicates that algorithm

Search will return the identifier of ciphertext C, if its

corresponding point D is indeed inside circle Q; otherwise,

algorithm Search will return the identifier of this ciphertext

with only a negligible probability. The encryption and de-

cryption of the content of each data record itself can always

be independently performed with another layer of traditional

encryption. There is no need to specifically describe it in the

definition of a searchable encryption according to the previous

study [13].

The simplest description of the preceding searchable en-

cryption on the entire dataset D = {D1, ..., Dn} can be easily

extended by separately encrypting each Di with Enc(SK, Di)
and linearly searching each ciphertext Ci with Search(TK, Ci)
(if assuming no additional data structures is leveraged).

IV. SECURITY DEFINITION

Leakage Function. Before we introduce the security defi-

nitions of a symmetric-key CRSE, we first present a leakage

function L, which covers all the information leakage in a

symmetric-key CRSE. For instance, the privacy leakage intro-

duced by a query Q on a data record D is denoted as L(D,Q).
Informally, the privacy leakage function of a symmetric-key

CRSE induced by circular range queries on a set of data

records includes the following aspects:

• Size Pattern: The cloud server learns the total number

of data records in the dataset and the total number of

search queries submitted by a client.

• Access Pattern: The cloud server reveals the identifier

of each encrypted data record that are returned for each

query.

• Search Pattern: The cloud server learns if the same en-

crypted data record is retrieved by two different queries.

• Radius Pattern: The cloud server knows the radius of a

circular range query submitted by a client.

Note that size pattern, access pattern and search pattern are

general information leakage in searchable encryption [6].

Theoretically, using Oblivious RAM [30] can preserve access

pattern and search pattern. However, it is not efficient in

practice. How to preserve the information defined in the above

leakage function is out of the scope of this paper.

Radius pattern are particularly introduced for circular range

queries we study in this work. Note that radius pattern is

essentially a part of information in a circular range query. The

query privacy we claim to protect in this paper particularly

focuses on preserving the values of centers (i.e., xc and

yc) against the semi-honest cloud server. And we argue that

revealing radius pattern is only a minor leakage in circular

range search compared to revealing the values of centers. For

example, revealing a query circle’s radius is 100 meters in

Location-Based Services will not directly indicate a user’s

private location (i.e., the center of the query circle). Because

the center of the query circle could still be anywhere in the

plane even with the knowledge of the radius. In fact, the

leakage of radius pattern in our design is similar as the leakage

of the message length in traditional encryption (such as AES).

The reason that why radius pattern are leaked and an additional

approach to somewhat preserve radius pattern in practice are

both described in Sec. VI.

Security Definition of CRSE. The security objective of a

symmetry-key CRSE is to preserve data privacy and query

privacy, which can be rigorously formalized with indistin-

guishability [29] under Selective Chosen-Plaintext Attacks

(SCPA) [19] by following the security of some previous

searchable encryptions [18], [31].

Query Privacy. Informally, query privacy of a symmetric-

key CRSE under Selective Chosen-Plaintext Attacks means by

submitting two circular range queries Q0 and Q1 with a same

radius R, a computationally bounded adversary A is able to

adaptively issue a number of ciphertext requests and token

requests selectively restricted by Q0, Q1 and leakage function

L. However, this adversary is not able to (computationally)

distinguish between Q0 and Q1. See the rigorous definition

(Def. 2) in Appendix.

Data Privacy. Informally, data privacy of a symmetric-key

CRSE under Selective Chosen-Plaintext Attacks means that

by submitting two data records D0 and D1, a computationally

bounded adversary A is able to adaptively issue a number of

ciphertext requests and token requests selectively restricted by

D0, D1 and leakage function L. However, adversary A fails

to distinguish between D0 and D1. See the rigorous definition

(Def. 3) in Appendix.

V. CIRCLE PREDICATE ENCRYPTION

In this section, we first introduce a Predicate Encryption

[18] (denoted as SSW) as a primitive, and then design a Circle

Predicate Encryption (CPE) to test whether a point is on the

boundary of a circle on encrypted spatial data based on SSW.

This CPE will be used as a stepping stone for the design of

Circular Range Searchable Encryption in the next section.

Predicate Encryption. Predicate Encryption is a special

type of encryption, which is able to test whether plain data

(e.g., u) satisfies a predicate (i.e., f(u) = 1 or f(u) = 0) with-

out revealing the content of plain data. Shen, Shi and Waters

(SSW) [18] designed a symmetric-key Predicate Encryption,

and it is able to support inner product queries. Specifically,

data is described as a vector ~u and a predicate can be denoted

as a vector ~v, and the evaluation over encrypted data reveals

f(~u) = 1 iff ~u ◦ ~v = 0, where ~u ◦ ~v =
∑n

i=1
vi · ui denotes

the inner product of the two vectors. Besides protecting

data privacy, SSW can preserve query privacy as well under

Selective Chosen-Plaintext Attacks. A brief description of each

algorithm in SSW is presented in Fig. 3. Further discussions

and security analyses of SSW can be found in [18].

Circle Predicate Encryption. Interestingly, we can lever-

age SSW to build a Circle Predicate Encryption, which is able
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• Setup(1λ,∆w
T ): Given security parameter λ and data space

∆w
T , output secret key SK.

• Enc(SK, ~u): Given SK and plaintext ~u ∈ ∆w
T , where ~u =

(u1, ..., uw), output ciphertext C.
• GenToken(SK, ~v): Given SK and query ~v ∈ ∆w

T , where ~v =
(v1, ..., vw), output token TK.
• Query(TK, C): Given TK and C, output 1 iff ~u ◦ ~v = 0 and

output 0 otherwise.
Correctness: SSW is correct, for all λ, all ~u ∈ ∆w

T , all ~v ∈
∆w

T , all SK← Setup(1λ,∆w
T ), all C ← Enc(SK, ~u), all TK←

GenToken(SK, ~v),

• If ~u ◦ ~v = 0, Query(TK, C) = 1;
• If ~u ◦ ~v 6= 0, Pr[Query(TK, C) = 0] ≥ 1− negl(λ);

Fig. 3. Details of SSW.

to particularly evaluate whether a point is on the boundary of

a circle on encrypted data. The main idea here is to “split”

the equation of a circle, where this equation is essentially a

polynomial, into an expression of an inner product of two

vectors. More specifically, we can easily have a polynomial

P = (x− xc)
2 + (y − yc)

2 −R2 = 0, (1)

where (xc, yc) is the center and R is the radius of a circle

Q and (x, y) denotes any point that is on the boundary of

this circle. Then, we simply split this polynomial into an

expression of an inner product of two vectors:

(x− xc)
2 + (y − yc)

2 −R2

= (x2 + y2)− 2x · xc − 2y · yc + x2

c + y2

c −R2

= (x2 + y2) · 1 + (−2x) · xc + (−2y) · yc + 1 · (x2

c + y2

c −R2)

= (x2 + y2,−2x,−2y, 1) ◦ (1, xc, yc, x
2

c + y2

c −R2)

=
∑

4

i=1
ui · vi,

(2)

where ~u = (u1, u2, u3, u4) = (x2 + y2,−2x,−2y, 1) and ~v =
(v1, v2, v3, v4) = (1, xc, yc, x

2
c + y2c −R2), and we have

(x− xc)
2 + (y − yc)

2 −R2 = 0 ⇔
4

∑

i=1

ui · vi = 0. (3)

Of course, this polynomial P presented above can be

denoted as an inner product of many different pairs of two vec-

tors. The key principle of this splitting process is: separating

the point (i.e., x and y) into vector ~u and distributing the circle

(i.e., xc, yc and R) into another vector ~v. We use an algorithm

Split(P ) to denote this splitting process on polynomial P ,

where the output include the length α of vector ~u and ~v,

formula f~u and f~v describing the general forms of vector ~u
and ~v. Specifically, the corresponding output of Split(P ) in

the above example are described as:

α = w + 2, f~u = (x2 + y2,−2x,−2y, 1),
f~v = (1, xc, yc, x

2
c + y2c −R2).

(4)

Clearly, assuming the number of dimensions w is given (i.e.,

the general form of polynomial P is given), formula f~u and

f~v can be obtained from Split without knowing any exact

values of points or circles. Therefore, Split is a deterministic

algorithm.

• GenKey(1λ,∆w
T ): Given a security parameter λ and the data

space ∆w
T , calculate polynomial P , compute

{α, f~u, f~v} ← Split(P ), SK← SSW.Setup(1λ,∆α
T ),

set {w, T, α, f~u, f~v} as public parameters and output a secret
key SK.
• Enc(SK, D): Given a secret key SK and a point D, where
D ∈ ∆w

T , compute

~u← f~u(D) ∈ ∆α
T , C ← SSW.Enc(SK, ~u),

and output a ciphertext C.
• GenToken(SK, Q): Given a secret key SK and a circle Q,

where Q ⊆ ∆w
T , compute

~v ← f~v(Q) ∈ ∆α
T , TK← SSW.GenToken(SK, ~v),

and output a token TK.
• Query(TK, C): Given a token TK and a ciphertext C, compute
Flag ← SSW.Query(TK, C), where Flag = 1 iff D ∈∗ Q
and Flag = 0 otherwise, and output Flag.

Correctness of CPE. We say CPE is correct, if for all λ, all
D ∈ ∆w

T , all Q ⊆ ∆w
T , all SK← GenKey(1λ,∆w

T ), all C ←
Enc(SK, D), all TK← GenToken(SK, Q),

• If D ∈∗ Q, Query(TK, C) = 1;
• If D /∈∗ Q, Pr[Query(TK, C) = 0] ≥ 1− negl(λ);

Fig. 4. Details of Circle Predicate Encryption.

With the above expression of an inner product on polyno-

mial P , we can build a Circle Predicate Encryption (CPE),

which is able to test whether a point D = (x, y) is on the

boundary of a circle Q = {(xc, yc), R} on encrypted spatial

data without revealing the content of the point, the center or

the radius. In the rest of this paper, we use D ∈∗ Q to indicate

point D is on the boundary of circle Q; otherwise, we have

D /∈∗ Q. Details of CPE are illustrated in Fig. 4. Adapting

to the cloud scenario, a data owner can run GenKey, Enc and

GenToken, then the cloud server is able to verify whether a

point is on the boundary of a circle on encrypted spatial data

by running Query without revealing data or query privacy.

An Example for CPE. Here is a concrete example helping

readers to understand how CPE works based on SSW. For

instance, given the number of dimension w = 2, a point

D = (x, y) = (2, 2), a circle Q = {(xc, yc), R} = {(3, 2), 1}
as shown in Fig. 5. According to Eq. 4, a data owner first

computes

α = 4, ~u = f~u(D) = (8,−4,−4, 1),
~v = f~v(Q) = (1, 3, 2, 12).

Then, it encrypts ~u = (8,−4,−4, 1) with SSW.Enc(SK, ~u) to

generate a ciphertext C, and calculates a search token TK

with SSW.GenToken(SK, ~v), where ~v = (1, 3, 2, 12). Later, the

cloud server is able to evaluate SSW.Query(TK, C) and output

Flag = 1, because

~u ◦ ~v = (8,−4,−4, 1) ◦ (1, 3, 2, 12)
= 8− 12− 8 + 12 = 0

which verifies point D is on the boundary of circle Q. On the

contrary, for another point D′ = (1, 3) in Fig. 5, its vector

form is ~u′ = f~u(D
′) = (10,−2,−6, 1). The evaluation on
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Q = {(3, 2), 1}

D = (2, 2)

D′ = (1, 3)

Fig. 5. A concrete example

SSW.Query(TK, C ′) will output Flag = 0 (i.e., point D′ is not

on the boundary of circle Q), since ~u′ ◦~v = (10,−2,−6, 1) ◦
(1, 3, 2, 12) = 4 6= 0.

Security of CPE. Since CPE is essentially a special instance

of SSW with pre-defined forms of ~u and ~v by Split. The

correctness and security of CPE can be simply obtained from

SSW. More concretely, because SSW is able to protect data

privacy and query privacy, this CPE is clearly able to protect

the privacy of vector ~u and ~v. As a result, the privacy of

a point, a center and a radius are all preserved during the

evaluation of Query in CPE.

Cases with Higher Dimensions. Our design in CPE can

also be simply extended to support points with higher dimen-

sions. For instance, if w = 3, the polynomial of a sphere is

(x− xc)
2 + (y − yc)

2 + (z − zc)
2 = R2,

where (xc, yc, zc) is the center of this sphere Q, R is the

radius and (x, y, z) represents any point that is on the boundary

of this sphere. Similarly, we can use the same principle to

split this polynomial into an inner product of two vectors with

Split, where the output of it in this case are described as:

α = w + 2, f~u = (x2 + y2 + z2,−2x,−2y,−2z, 1),
f~v = (1, xc, yc, zc, x

2
c + y2c + z2c −R2).

VI. CIRCULAR RANGE SEARCHABLE ENCRYPTION

In this section, we use Circular Predicate Encryption pre-

sented above as a stepping stone to design two symmetric-

key Circular Range Searchable Encryption schemes, denoted

as CRSE-I and CRSE-II respectively. Specifically, CRSE-I is

able to strictly achieve the security under Selective Chosen-

Plaintext Attacks defined by Def. 2 and Def. 3 in Appendix,

but it has some limitations in terms of scalability and effi-

ciency. While CRSE-II is more scalable and efficient, but it

is weaker in the aspect of security compared to the first one.

The essential objective of each scheme is to verify whether

a point is inside a circle on encrypted spatial data. In fact,

the starting points of the design of these two schemes are the

same, the main differences are introduced due to the different

styles of implementing Circular Predicate Encryption.

A. The Starting Point of the Design

Main Idea. Basically, the main idea of this starting point

in our design is to use a number of concentric circles (i.e., the

same center but different radiuses) to cover all the possible

points inside the given query circle Q (as shown in Fig. 6).

Clearly, this query circle itself is the one with the largest radius

Fig. 6. The Main Idea of our design: given a circular range query, generate
a number of concentric circles covering all the possible points inside.

among these concentric circles. For the center, we treat it as a

special concentric circle with a radius of zero. The correctness

of this idea lies in the fact that if a point is on the boundary of

one of these concentric circles, then it is certainly inside the

given query circle; otherwise, it is outside the query circle.

The Number of Concentric Circles. Because we only

consider data with integers in this paper, so a finite number of

concentric circles is sufficient to cover all the possible points.

We denote this number as m. We use GenConCircle(Q)
to denote the algorithm of computing m and calculating all

the radiuses of those concentric circles based on a query

circle Q, where Q = {(xc, yc), R}. Since the output of

GenConCircle is independent with the center, we can also

present it equivalently as GenConCircle(R).
Assume all the m radiuses of those concentric circles are

{r1, ..., rm}, and we have r2i = x2+y2 (since GenConCirlce

is independent with the value of the center, we assume the

current center is (0, 0) without loss of generality). Because the

radius of each concentric circle is distinct, given the restriction

x2 + y2 = r2i ≤ R2 based on a query circle, the number

of concentric circles is actually equivalent to the number of

integers in [0, R2] that can be represented as a sum of two

squares. While the sum of two squares, which is presented as

below, is a classic problem in number theory [32].

Theorem 1: (Sum of Two Squares) A positive integer n
is the sum of two squares if and only if each prime factor p
of n such that p ≡ 3 mod 4 occurs to an even power in the

prime factorization of n.

Detailed proof of this theorem can be found in [32]. With

this knowledge, we can easily compute the actual value of

m and enumerate all the radiuses of those concentric circles.

Clearly, this GenConCircle is a deterministic algorithm and

the upper bound of m is R2+1 considering in two dimensions.

B. Circular Range Searchable Encryption-I

Now let us see how to specifically verify a point inside

a circle on encrypted spatial data with CRSE-I. With m
concentric circles we described in the preceding subsection,

we can have m polynomials

Pi = (x− xc) + (y − yc)− r2i , for 1 ≤ i ≤ m

The idea of CRSE-I is to combine all the m polynomials into

a single polynomial P , split this single polynomial P into two

vectors, and run it as a special instance of SSW as a similar
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P = P1 × P2

=
[
(x2 + y2) + (−2x · xc) + (−2y · yc) + (x2

c + y2

c − r21)
]
·
[
(x2 + y2) + (−2x · xc) + (−2y · yc) + (x2

c + y2

c − r22)
]

= (x2 + y2)2 · 1 + (−2x3 − 2xy2) · xc + (−2x2y − 2y3) · yc + (x2 + y2) · (x2

c + y2

c − r22)

+ (−2x3 − 2xy2) · xc + 4x2 · x2

c + 4xy · xcyc + (−2x) · (x3

c + xcy
2

c − xcr
2

2) + (−2x2y − 2y3) · yc

+ 4xy · xcyc + 4y2 · y2

c + (−2y) · (x2

cyc + y3

c − ycr
2

2) + (x2 + y2) · (x2

c + y2

c − r21)

+ (−2x) · (x3

c + xcy
2

c − xcr
2

1) + (−2y) · (x2

cyc + y3

c − ycr
2

1) + 1 · (x2

c + y2

c − r21)(x
2

c + y2

c − r22)

= [(x2 + y2)2, −2x3 − 2xy2, −2x2y − 2y3, x2 + y2, −2x3 − 2xy2, 4x2, 4xy, −2x, −2x2y − 2y3, 4xy,

4y2, −2y, x2 + y2, −2x, −2y, 1] ◦ [1, xc, yc, x2

c + y2

c − r22, xc, x2

c , xcyc, x3

c + xcy
2

c − xcr
2

2, yc,

xcyc, y2

c , x2

cyc + y3

c − ycr
2

2, x2

c + y2

c − r21, x3

c + xcy
2

c − xcr
2

1, x2

cyc + y3

c − ycr
2

1, (x2

c + y2

c − r21)(x
2

c + y2

c − r22)]

= f~u ◦ f~v (5)

way as CPE in the preceding section. More specifically, we

have

P = P1 × P2 × · · · × Pm. (6)

In this case, if a point is on the boundary of any of those

concentric circles, it is inside the circle, and vice verse. The

correctness of this description can be presented as follows:

P = 0⇔ Pi = 0, for any i ∈ [1,m]. (7)

This single polynomial P can be easily computed from

GenConCircle, which is essentially able to output all the

m polynomials (i.e., Pi, for 1 ≤ i ≤ m) of concentric

circles. After calculating this single polynomial P , we can

follow the same splitting principle in CPE to similarly divide

polynomial P into an inner product of two vectors using

Split. Specifically, according to the results in CPE, for each

sub-polynomial Pi, we can split it with α = (w + 2) terms

(i.e., an inner product of two (w + 2)-dimensional vectors).

Pi = (x2 + y2,−2x,−2y, 1) ◦ (1, xc, yc, x
2

c + y2

c − r2i )

= (x2 + y2) · 1
︸ ︷︷ ︸

term

+(−2x) · xc
︸ ︷︷ ︸

term

+(−2y) · yc
︸ ︷︷ ︸

term

+1 · (x2

c + y2

c − r2i )
︸ ︷︷ ︸

term

Therefore, the splitting on the single polynomial P ends

up with α = (w + 2)m terms (i.e., an inner product of two

(w + 2)m-dimensional vectors). An example of the splitting

on this single polynomial P where m = 2 is described in Eq.

5. Note that the vectors’ length α can be reduced by further

simplifying polynomial P (e.g., the optimized value of α could

be 10 in Eq. 5 instead of (w + 2)m = 42 = 16).

Clearly, given the number of dimensions w and the number

of concentric circles m (i.e., the general form of polynomial P
is given), formula f~u and f~v can be obtained from Split with-

out knowing any exact values of points or circles. However,

since we need the pre-information about the radius R (i.e., the

number of concentric circles m) in order to decide the general

form of polynomial P , one inherent limitation of this CRSE-

I in terms of scalability is that it can only handle circular

range queries with static radius (i.e., the radius of circular

range queries needs to be pre-defined during the setup the

scheme). In addition, since the radius in this design needs to

be a public parameter and GenConCircle and Split are both

deterministic algorithms, which inevitably leak radius pattern

of circular range queries. That is why we particularly include

radius pattern in the leakage function. Details of CRSE-I

• GenKey(1λ,∆w
T ): Given a security parameter λ, the data space

∆w
T , define radius R, compute

{m, r1, ..., rm} ← GenConCircle(R),

calculate polynomial P = P1 · · ·Pm, compute

{α, f~u, f~v} ← Split(P ), SK← SSW.Setup(1λ,∆α
T ),

set {w, T,R, α, f~u, f~v} as public parameters and output a
secret key SK.
• Enc(SK, D): Given a secret key SK and a point D, where
D = (x, y) ∈ ∆w

T , compute

~u← f~u(D) ∈ ∆α
T , C ← SSW.Enc(SK, ~u),

and output a ciphertext C.
• GenToken(SK, Q): Given a secret key SK and a circle Q =
{(xc, yc), R}, where Q ⊆ ∆w

T , compute

~v ← f~v(Q) ∈ ∆α
T , TK← SSW.Query(SK, ~v),

and output a token TK.
• Search(TKTKTK, C): Given a token TK and a ciphertext C, compute
Flag ← SSW.Query(TK, C), where Flag ∈ {0, 1}, if Flag

equals to 1, return the identifier I of this ciphertext; otherwise
output ⊥.

Fig. 7. Details of CRSE-I.

are presented in Fig. 7. The correctness of CRSE-I can be

easily obtained based on SSW similar as Circular Predicate

Encryption.

An Example for CRSE-I. Here we still use the previous

concrete example in Fig. 5 to show how CRSE-I works based

on SSW. Specifically, given the number of dimensions w = 2,

a circular range query Q = {(xc, yc), R} = {(3, 2), 1}, a point

D = (x, y) = (2, 2) from Fig. 5, we can first have the number

of concentric circles m is 2, which is sufficient to cover all the

five possible points inside circle Q in Fig. 5 based on the sum

of two squares theorem. In addition, we have the radius of

these two concentric circles are r1 = 0 (i.e., representing the

center as a concentric circle with radius zero) and r2 = 1 (i.e.,

a concentric circle that is equivalent to the query circle itself)

respectively. According to Eq. 5, a data owner can compute

the vector form of point D = (2, 2) as ~u = f~u(D) =

(64,−32,−32, 8,−32, 16, 16,−4,−32, 16, 16,−4, 8,−4,−4, 1)

And the vector form of circle Q = {(xc, yc), R} =
{(3, 2), 1} can be computed (based on Eq. 5 with the knowl-

edge of r1 = 0 and r2 = 1) as ~v = f~v(Q) =
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(1, 3, 2, 12, 3, 9, 6, 36, 2, 6, 4, 24, 13, 39, 26, 156)

Then, the data owner is able to output a ciphertext C with

SSW.Enc(SK, ~u), and can later compute a search token TK

with SSW.GenToken(SK, ~v). Then, the cloud server is able to

evaluate SSW.Query(TK, C) and output Flag = 1, because

~u ◦ ~v = 0, which verifies point D = (2, 2) is inside circle

Q = {(3, 2), 1}.
On the contrary, for point D′ = (1, 3) in Fig. 5, its vector

form (based on Eq. 5) is ~u′ = f~u(D
′) =

(100,−20,−60, 10,−20, 4, 12,−2,−60, 12, 36,−6, 10,−2,−6, 1)

The evaluation on SSW.Query(TK, C ′) will output Flag = 0
(i.e., point D′ is not inside circle Q), since ~u′ ◦ ~v = 20 6= 0.

Search Complexity of CRSE-I. According to the above

design and search complexity of SSW [18], the search effi-

ciency of CRSE-I is O(αm) per data record. The number of

concentric circles m increases with O(R2) based on the dis-

cussion on the sum of two squares theorem. Clearly, although

CRSE-I is able to correctly verify whether a point is inside a

circle on encrypted spatial data, it is impractical for circular

range queries with large radiuses.

C. Circular Range Searchable Encryption-II

In order to overcome the limitations in terms of scalability

and efficiency in the first scheme, we now design another

one, denoted as CRSE-II, which is still based on the idea of

concentric circles. Specifically, in this second scheme, instead

of combing the m polynomials into a single one compared to

CRSE-I, we directly split each sub-polynomial Pi into an inner

product of two vectors (as we did in CPE), and create a sub-

token for each concentric circle by leveraging CPE (essentially

SSW). Since we have m concentric circles in total in order to

cover all the possible points inside a query circle, CRSE-II will

generate m sub-tokens for a query circle. Correspondingly,

CRSE-II needs to evaluate a number of m sub-tokens on a

ciphertext to test whether a point is inside the query circle

in the worst case (i.e., if the evaluation of the i-th sub-token

on a ciphertext outputs 1, where i ∈ [1,m], the sub-tokens

from (i+1)-th to m-th do not need to be evaluated anymore).

Details of CRSE-II are presented in Fig. 8. Obviously, the

correctness of CRSE-II is based on the correctness of CPE.

Since GenConCircle is a deterministic algorithm as we

mentioned before, revealing the number of sub-tokens m in the

output of GenToken in CRSE-II essentially reveals radius R.

This is the reason that CRSE-II fails to protect radius privacy.

Besides GenConCircle, an additional permutation function

Permute is used in CRSE-II. The purpose of this permutation

is to permute the order of sub-tokens in TKTKTK = {TK1, ..., TKm}
into a random order. Clearly, this permutation function needs

to be permuted with a fresh random β each time to maintain

its security.

An Example for CRSE-II. We continue to use the example

in Fig. 5 to show how our second scheme works based on CPE

(essentially SSW). Given the number of dimensions w = 2, a

• GenKey(1λ,∆w
T ): same as CPE.GenKey(1λ,∆w

T );
• Enc(SK, D): same as CPE.Enc(SK, D);
• GenToken(SK, Q): Given a secret key SK and a circle Q,

where Q = {(xc, yc), R} and Q ⊆ ∆w
T , compute

{m, r1, ..., rm} ← GenConCircle(R),
Qi = {(xc, yc), ri}, TKi ← CPE.GenToken(SK, Qi)

for 1 ≤ i ≤ m and TKTKTK = (TK1, ..., TKm), generate a random
β ∈ [1,m!], calculate

TKTKTK
∗ ← Permute(TKTKTK, β),

and output a token TKTKTK
∗ = (TK∗1, ..., TK

∗

m);
• Search(TKTKTK∗, C): Given a token TKTKTK

∗ = (TK∗1, ..., TK
∗

m) and a
ciphertext C, for 1 ≤ i ≤ m, compute

Flagi ← CPE.Query(TK∗i , C),

if any Flagi equals to 1, return the identifier I of this
ciphertext; otherwise output ⊥.

Fig. 8. Details of CRSE-II.

point D = (2, 2) and a query circle Q = {(3, 2), 1}, we first

have the number of concentric circles m = 2 with concentric

circle radius r1 = 0 and r2 = 1 respectively (still based on the

sum of two squares theorem as in our first scheme CRSE-I).

According to Eq. 2 in CPE, we have

P1 = (x2 + y2,−2x,−2y, 1) ◦ (1, xc, yc, x
2

c + y2c − r2
1
)

P2 = (x2 + y2,−2x,−2y, 1) ◦ (1, xc, yc, x
2

c + y2c − r2
2
)

which can be used to calculate the vector form of point D as

~u = (8,−4,−1, 1) (as the same as the one in CPE) and the

vector forms of two concentric circles Q1 = {(xc, yc), r1} =
{(3, 2), 0}, Q2 = {(xc, yc), r2} = {(3, 2, ), 1} as

~v1 = (1, 3, 2, 13), ~v2 = (1, 3, 2, 12)

Then a data owner can generate a ciphertext C with

SSW.Enc(SK, ~u), compute TKTKTK = {TK1, TK2} with two sub-

tokens where TK1 = SSW.GenToken(SK, ~v1) and TK2 =
SSW.GenToken(SK, ~v2), and output a permuted search token

as TKTKTK∗ = {TK∗
1
, TK∗

2
} = Permute(TKTKTK, β).

Later, the cloud server is able to verify point D = (2, 2)
is inside circle Q = {(3, 2), 1} on encrypted spatial data by

running SSW.Query(TK∗i , C), for 1 ≤ i ≤ m. It is because the

evaluation on one of these two sub-tokens with ciphertext C
outputs Flagi = 1 (i.e., one of the two inner products is zero,

where ~u ◦ ~v1 6= 0 but ~u ◦ ~v2 = 0).

On the contrary, for point D′ = (1, 3), its vector form

is ~u′ = (10,−2,−6, 1). The evaluation on its corresponding

ciphertext C ′ with the search token TKTKTK∗ = {TK∗
1
, TK∗

2
} of query

circle Q = {(3, 2), 1} will indicate this point is outside this

circle. The reason is that the evaluation on both of the two

sub-tokens with ciphertext C ′, where SSW.Query(TK∗i , C
′), for

1 ≤ i ≤ m, will output Flagi = 0 (i.e., neither of the two

inner products is zero, where ~u′ ◦ ~v1 6= 0 and ~u′ ◦ ~v2 6= 0).

Search Complexity of CRSE-II. The search complexity of

CRSE-II on each ciphertext is O(αm) in the worst case (i.e.,

O(α) for each sub-token), where α = (w + 2) is the length
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of the vectors and w is the number of dimensions. Obviously,

this O(αm) is much efficient than O(αm) in CRSE-I.

D. Additional Discussions.

CRSE-I and CRSE-II in Multiple Dimensions. Since

Circular Predicate Encryption is the stepping stone for both of

the two schemes, and CPE can be easily extended to support

spatial data in multiple dimensions as we described in Sec.

V, therefore, both CRSE-I and CRSE-II can be extended to

provide circular range search on encrypted spatial data with

multiple dimensions. One major difference is that the number

of concentric circles may increase.

Specifically, when it comes to higher dimensions, the

number of concentric circles we need can be enumerated

based on Legendre’s theorem on the sum of three squares

(i.e., 3 dimensions) and Lagrange’s theorem on the sum of

four squares (i.e., 4 dimensions) [32]. Particularly, when the

number of dimensions is equal or larger than 4, the number of

concentric circles is exactly R2 + 1, because every integer in

[0, R2] can be represented as a sum of four squares according

to Lagrange’s four-square theorem.

Floating Numbers. Note that we cannot support floating

numbers (e.g., 1

3
and

√
5) with our design methodology

because the number of concentric circles could be infinite

(i.e., the number of points need to be covered is infinite),

which is much more challenging to handle on encrypted spatial

data. Another main reason is that an encryption algorithm

itself generally does not support floating numbers (i.e., values

to be encrypted are normally elements of Zp, where p is a

large prime). This second reason is also why other geometric

searchable encryption schemes, such as for rectangle range

search [13]–[16], limit their implementations to integers only.

It is worth to notice that, even we assume all the points and

centers are integers, the radius R could be floating numbers

in many cases. For instance, R =
√
2 (e.g., (x, y) = (1, 1)

and (xc, yc) = (0, 0)). However, since we are dealing with

the square of a radius, e.g., R2 = 2 (which is still an integer)

during the encryption, so it is not a problem for our methods

to handle cases like this.

Radius Privacy. As we mentioned, our schemes leak radius

pattern, which is a minor leakage. However, we can still use an

approach to somewhat preserve radius privacy in practice. Take

CRSE-II as an example, we can introduce additional dummy

sub-tokens (i.e., dummy concentric circles) to each circular

range query, and set the total number of sub-tokens as K to

hide the actual number of concentric circles m, where m ≤ K.

More specifically, for each circular range query, we can

generate some dummy concentric circles, whose radiuses are

beyond the data space, so that the points in the dataset will

never be on the boundaries of dummy concentric circles. For

example, if the data space for all the points in a real dataset

is {x ∈ [0, 100]} ∧ {y ∈ [0, 100]}, we can generate a dummy

concentric circle with R = 200. Similarly, radius privacy can

also be conducted in CRSE-I by choosing a value of K to

hide the actual value of m during the setup of CRSE-I.

The Challenge and Trade-off of Achieving Faster-Than-

Linear Search. Since we do not use any data structures to

index data, our schemes are linear search regarding to the

number of data records. Some readers may argue our design

is not efficient yet, especially on large-size datasets (e.g.,

millions or billions of data records). However, if we consider

none of the previous searchable encryption schemes is able to

particularly support circular range search on encrypted spatial

data (with a minimal one-round client-server interaction and

a single cloud server), our design is already a step forward.

Besides, building a linear search scheme is normally a nec-

essary stepping stone for future designs achieving faster-than-

linear search, especially on encrypted data. For example, the

previous searchable encryptions for common SQL queries,

such as keyword search [4] and range search [13], [14], all

take linear search as their first steps.

Generally, to obtain faster-than-linear search, a common ap-

proach (in the plaintext domain) is to leverage data structures.

R-trees [17] are perhaps the most popular ones used for spatial

data. In order to strictly follow the search algorithm of an

R-tree (i.e., achieving faster-than-linear search) for circular

range queries, besides testing whether a point is inside a circle

on encrypted data at each leaf node in an R-tree (which we

can support with our current design), we also need to verify

whether a rectangle intersects with a circle on encrypted data

at each non-leaf node, which unfortunately our design is not

sufficient. Stated differently, besides checking whether a point

is inside a circle, if we are able to find an efficient approach

to verify whether a rectangle intersects with a circle in the

ciphertext domain, then essentially we find a solution for

building faster-than-linear circular range search.

On the other hand, since achieving faster-than-linear search

needs to reveal additional meaningful information (i.e.,

whether a rectangle intersects with a circle), the security of

a faster-than-linear search scheme will be weaker than what

we have rigorously defined in our schemes. For instance, if

a tree structure (e.g., an R-tree) will be used, the additional

privacy leakage in a tree, such as path pattern [12], [17],

tree size&height, tree structures, should also be properly

considered in the security game and the leakage function.

Moreover, secure dynamic data with trees has always been

another major challenging issue. Meanwhile, the opportunity

of using parallel computing in the cloud may be restricted as

well due to the additional use of tree structures.

VII. SECURITY ANALYSIS

Security of CRSE-I. From the high-level, since CRSE-I

can be interpreted as a specific instance of SSW with pre-

defined form of vector ~u and ~v, the security of CRSE-I under

Selective Chosen-Plaintext Attacks can be proved based on

the security of SSW [18] under Selective Chosen-Plaintext

Attacks. Specifically, we have

Theorem 2: (SCPA Query Privacy of CRSE-I) CRSE-

I is query secure under Selective Chosen-Plaintext Attacks, if

SSW is query secure under Selective Chosen-Plaintext Attacks.

Proof: See the detailed proof in Appendix.
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Fig. 11. Impact of R on token
generation time (second) per query.
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Fig. 12. Impact of R on search
time (second) per data record.
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Fig. 13. Impact of R on the size
of a ciphertext (Byte).
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Fig. 14. Impact of R on search
token size (KB) of a query.
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Fig. 15. Impact of n on total en-
cryption time (second) on multiple
data records.
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query on multiple data records.

Theorem 3: (SCPA Data Privacy of CRSE-I) CRSE-I is

data secure under Selective Chosen-Plaintext Attacks, if SSW

is data secure under Selective Chosen-Plaintext Attacks.

Proof: See further analyses in Appendix.

Security of CRSE-II. Although our second scheme is more

efficient, and a permutation is utilized to enhance the privacy,

its security is still weaker than what we rigorously defined

for the first scheme. Essentially, the security weakness is

introduced by the existence of sub-tokens in CRSE-II, where

each sub-token can be independently used to evaluate a match

on whether a point is on the boundary of a concentric circle.

In Appendix, we use a concrete example to describe the

security weakness of CRSE-II. In addition, we show that

CRSE-II can still be defined secure under Selective Chosen-

Plaintext Attacks, but some additional restrictions (compared

to Def. 2 and Def. 3) are needed to rigorously capture the

corresponding security weakness. See details in Appendix.

VIII. PERFORMANCE

In this section, we evaluate the performance of our proposed

schemes in real cloud platform. We leverage the GNU Multiple

Precision Arithmetic (GMP) and Pairing-Based Cryptography

(PBC) library to test the running time of cryptographic opera-

tions in our schemes, and run our test code in an Amazon EC2

medium instance of Ubuntu 14.04 with variable ECUs (i.e.,

EC2 Compute Unit), 2 CPUs (2.5 GHz Intel Xeon Family)

and 4 GB Memory. In addition, we choose super-singular

curve y2 = x3 + x to achieve the fastest performance in PBC

for evaluating pairing operations, which are the dominating

operations in our search process on encrypted spatial data.

Specifically, the average running time of a paring operation

with the preprocessing model in PBC is around 0.44 millisec-

onds in our experiments. Due to space limitations, we focus

our results where the number of dimensions is w = 2.

Performance of CRSE-I. The complexity of CRSE-I is

O(αm) in the aspect of encryption time, token generation time

and search time, where α = (w + 2) is the length of vectors,

and the number of concentric circles m increases with O(R2).

R m Enc GenToken Search

1 2 0.015 0.019 0.009
2 4 0.077 0.102 0.050
3 7 3.09 4.12 1.96

TABLE I
RUNNING TIME (SECOND) OF CRSE-I WHEN w = 2.

R m Ciphertext Size Search Token Size

1 2 2.18 2.18
2 4 32.90 32.90
3 7 2097.28 2097.28

TABLE II
CIPHERTEXT&SEARCH TOKEN SIZE (KB) OF CRSE-I WHEN w = 2.

Based on the sum of two square theorem, the actual value of

m increasing with radius R under w = 2 is described in Fig.

9. In Table I and Table II, we present some results to show

how CRSE-I dramatically increases with radius R in terms of

running time and ciphertext&search token size.

Performance of CRSE-II. The performance of CRSE-II

are described in Fig. 10 to Fig. 12. We can see that the

encryption time of CRSE-II is independent with radius R. The

token generation time and search time are both increasing with

the square of radius R. Specifically, if w = 2 and R = 10,

CRSE-II needs only 5.61 milliseconds to encrypt a data record,

takes 329.47 milliseconds to generate a search token for a

circular range query, and requires around 98.65 milliseconds

(in average case) to check whether a point is inside the given

circle on encrypted data. Similarly, as presented in Fig. 13 and

Fig. 14, the size of a ciphertext in CRSE-II is independent

with radius R, and the size of a search token increases with

the square of radius R. More specifically, when w = 2 and

R = 10, the size of a ciphertext is 640 Bytes, and the size of

a search token is 28.16 KB. As we can see that, CRSE-II is

much efficient compared to CRSE-I.

Performance of CRSE-II on Datasets. As we mentioned,

it is obvious to see that the search time of CRSE-II on a

dataset (i.e., multiple data records) are linearly increasing with

the number of encrypted data records n. Specifically, in Fig.

16, if R = 10 and w = 2, the search time of CRSE-II with

n = 1, 000 is 98.65 seconds; while if R = 1 and w = 2,
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D = (46.52262, 14.82961)

(46.5226, 14.8296) (46.52262, 14.82961)(46.523, 14.830)

d09ea156d0...... 5e7186e49a...... 4d767fb94e......

CRSE.Enc CRSE.Enc CRSE.Enc

Ciphertexts

Efficient for 

Real World 

Radius (meter)

{100, 200, 300, 400, 500,
600, 700, 800, 900}

{10, 20, 30, 40, 50,
60, 70, 80, 90}

{1, 2, 3, 4, 5,
6, 7, 8, 9}

Original Data Record

Rounding with 

Different Lengths 

of Digits

Fig. 17. An example of maintaining multiple ciphertexts for each data record
with CRSE-II to support efficient search with different levels of data accuracy.

(Latitude, Longitude) R Real World Average Search
Radius (meter) Time (second)

(46.52262, 14.82961) 100 100 6165.50
(46.5226, 14.8296) 10 100 98.65
(46.523, 14.830) 1 100 4.44

TABLE III
TRADE-OFF BETWEEN EFFICIENCY AND DATA ACCURACY WHEN w = 2

AND n = 1, 000 (THE REAL WORLD RADIUS IS AN APPROXIMATE RESULT).

the search time of CRSE-II on the same number of encrypted

data records is only 4.44 seconds. As we can see, the total

search time on a dataset is faster and more desirable when R
is smaller.

Trade-off between Efficiency and Data Accuracy. One

practical method to still guarantee an efficient search time for

handling large circular range queries in real applications is to

decrease data accuracy. We take a part of a dataset of users’

location check-in information from an LBS (named Brightkite)

as an example to show how this trade-off works, where the

original dataset can be obtained from Stanford University’s

SNAP project [33].

For instance, given a point (i.e., a user’s check-in location)

D = {Lat. = 46.5226, Long. = 14.8296} from the dataset,

where its equivalent integer format is {465226, 148296}, we

can search other points close to point D within a distance

of approximate3 100 meters by setting R = 10 in CRSE-II.

However, if we present the point as D = {Lat. = 46.523,

Long. = 14.830} (rounding with one digit shorter), where

its equivalent integer format is {46523, 14830}, then we can

still search points within approximate 100 meters by choosing

R = 1, which performs circular range search within the same

radius in the real world but significantly improves the search

time on multiple data records (as presented in Table III). Said

differently, a client is expected to spend more search time if

it would like to receive more accurate search results.

In fact, we can maintain multiple ciphertexts for each data

record with CRSE-II (an example is illustrated in Fig. 17)

to flexibly support circular range queries with different levels

of data accuracy and search efficiency. As a necessary trade-

off, extra overheads are needed for computing and storing

multiple ciphertexts of each data record. Moreover, since

each encrypted data record in our schemes can be evaluated

independently with a given search token, the performance

3The accurate distance based on location information can be computed
using some online tool: http://www.movable-type.co.uk/scripts/latlong.html

of our design can be further improved by using parallel

computing with multiple instances of Amazon EC2.

IX. CONCLUSION AND FUTURE WORK

We propose two novel schemes to support circular range

search on encrypted spatial data without revealing data privacy

or query privacy to the public cloud. Our future research

include 1) designing circular range searchable encryption

achieving faster-than-linear search with regard to the number

of data records; 2) studying searchable encryption schemes

for other common geometric queries, such as simplex range

search (i.e., retrieving points that are inside a triangle).
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APPENDIX

Definition 2: (SCPA Query Privacy). Let Π = (GenKey,
Enc, GenToken, Search) be a symmetric-key CRSE scheme

over security parameter λ and data space ∆w
T :

Init: The adversary submits two circular range queries Q0

and Q1 with the same radius to the challenger, where Q0 =
{(x0, y0), R}, Q1 = {(x1, y1), R}, Q0, Q1 ⊆ ∆w

T .

Setup: The challenger runs GenKey(1λ,∆w
T ) to generate a

secret key SK and it keeps SK private.

Phase 1: The adversary adaptively issues a number of

requests, where each request is one of the two following types:

• Ciphertext Request: On the jth ciphertext request, the

adversary outputs a data record Dj , where Dj ∈
∆w

T . The challenger responses with a ciphertext Cj =
Enc(SK, Dj), where Dj is subjected to

1) L(Dj , Q0) = L(Dj , Q1);
2) (Dj ∈ Q0) ∧ (Dj ∈ Q1) OR (Dj /∈ Q0) ∧

(Dj /∈ Q1);

with 1) AND 2).

• Token Request: On the jth token request, the adversary

outputs a circular range query Q′
j = {(x′

j , y
′
j), R

′
j},

where Q′
j ⊆ ∆w

T . The challenger responses with a search

token TK′j = GenToken(SK, Q′
j).

Challenge: With Q0, Q1 chosen in Init, the challenger flips

a coin b ∈ {0, 1} and returns TKb = GenToken(SK, Qb) to the

adversary.

Phase 2: The adversary continues to adaptively issue a

number of requests, which are still subjected to the same

restrictions in Phase 1.

Guess: The adversary takes a guess b′ of b.
We say that scheme Π is SCPA query secure if for any

polynomial time adversaries in the above game, it has at most

negligible advantage

Adv
SCPA-Query
Π,A (1λ,∆w

T ) =

∣

∣

∣

∣

Pr[b′ = b]− 1

2

∣

∣

∣

∣

≤ negl(λ)

where negl(λ) denotes a negligible function in λ.

Definition 3: (SCPA Data Privacy). Let Π = (GenKey,
Enc, GenToken, Search) be a symmetric-key CRSE scheme

over security parameter λ and data space ∆w
T :

Init: The adversary submits two data records D0 and D1

with the same length to the challenger, where D0, D1 ∈ ∆w
T .

Setup: The challenger runs GenKey(1λ,∆w
T ) to generate a

secret key SK and it keeps SK private.

Phase 1: The adversary adaptively issues a number of

requests, where each request is one of the two following types:

• Ciphertext Request: On the jth ciphertext request, the

adversary outputs a data record D′
j , where D′

j ∈
∆w

T . The challenger responses with a ciphertext C ′
j =

Enc(SK, D′
j).

• Token Request: On the jth token request, the adversary

outputs a circular range query Qj = {(xj , yj), Rj},
where Qj ⊆ ∆w

T . The challenger responses with a search

token TKj = GenToken(SK, Qj), where Qj is subjected

to

1) L(D0, Qj) = L(D1, Qj);
2) (D0 ∈ Qj) ∧ (D1 ∈ Qj) OR (D0 /∈ Qj) ∧

(D1 /∈ Qj);

with 1) AND 2).

Challenge: With D0, D1 chosen in Init, the challenger flips

a coin b ∈ {0, 1} and returns Cb = Enc(SK, Db) to the

adversary.

Phase 2: The adversary continues to adaptively issue a

number of requests, which are still subjected to the same

restrictions in Phase 1.

Guess: The adversary takes a guess b′ of b.
We say that scheme Π is SCPA data secure if for any

polynomial time adversaries in the above game, it has at most

negligible advantage

Adv
SCPA-Data
Π,A (1λ,∆w

T ) =

∣

∣

∣

∣

Pr[b′ = b]− 1

2

∣

∣

∣

∣

≤ negl(λ)

where negl(λ) denotes a negligible function in λ.

A. Proof of SCPA Query Privacy of CRSE-I

The main idea of the following proof is to simulate the

query security game under SCPA defined in Def. 2 with an

adversary A in the query security game of SSW under SCPA.

And we prove that if A is able to distinguish two queries Q0

and Q1 in CRSE-I, it is equivalent for A to distinguish two

corresponding vectors ~v0 and ~v1 in SSW, which contradicts

to the assumption that SSW is query secure under SCPA.

Specifically, we have

Init: The adversary A selects two circular range queries Q0,

Q1 with the same radius R, where Q0, Q1 ⊆ ∆w
T , computes

{m, r1, ..., rm} ← GenConCircle(R), calculates polynomial
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P = P1 · · ·Pm, computes {α, f~u, f~v} ← Split(P ), trans-

forms ~v0 = f~v(Q0), ~v1 = f~v(Q1), and submits ~v0, ~v1 ∈ ∆α
T

to the challenger.

Setup: The challenger runs SSW.GenKey(1λ,∆α
T ) to gener-

ate a secret key SK and keeps it private.

Phase 1: The adversary adaptively requests a number of

queries. For Ciphertext Query, A outputs a data record Dj ,

where Dj ∈ ∆w
T , submits ~uj = f~u(Dj) ∈ ∆α

T to the

challenger. The challenger responses with a ciphertext C =
SSW.Enc(SK, ~uj) subjected with the following restrictions:

{

Either (~uj ◦ ~v0 = 0) ∧ (~uj ◦ ~v1 = 0)
or (~uj ◦ ~v0 6= 0) ∧ (~uj ◦ ~v1 6= 0),

which are equivalently transformed from the original restric-

tions defined in Def. III:
{

1) L(Dj , Q0) = L(Dj , Q1);
2) Either (Dj ∈ Q0) ∧ (Dj ∈ Q1) or (Dj /∈ Q0) ∧ (Dj /∈ Q1).

Note that the leakage of radius pattern in leakage function L
of CRSE-I maps to the inevitable leakage of the length of

vector ~v0 and ~v1 in the selective security game of SSW [18].

For Token Query, A outputs a circular range query Q′
j ,

where Q′
j ⊆ ∆w

T , submits ~v′j = f~v(Q
′
j) ∈ ∆α

T . The challenger

responses with a search token TK′j = SSW.GenToken(SK, ~v′j).
Challenge: With ~v0, ~v1 selected in Init, the challenger flips

a coin b ∈ {0, 1}, and returns TKb = SSW.GenToken(SK, ~vb)
to A.

Phase 2: A continues to request a number of queries by

following the same restrictions in Phase 1.

Guess: A takes a guess b′ of b.
Since we successfully simulate query security game of CRSE-

I under SCPA with an adversary A in the query security game

of SSW under SCPA, if adversary A is able to distinguish Q0

and Q1 in CRSE-I, it is equivalent for it to distinguish ~v0 and

~v1 in SSW, which can be interpreted as:

Adv
SCPA-Query
CRSE-I,A (1λ,∆w

T ) = Adv
SCPA-Query
SSW,A (1λ,∆α

T ) ≤ negl(λ)

Therefore, CRSE-I is query secure under SCPA.

B. Proof of SCPA Data Privacy of CRSE-I

Similarly as the proof for SCPA query privacy, the main

idea of this proof is to simulate the data security game under

SCPA defined in Def. 3 with an adversary A in the data

security game of SSW under SCPA. If adversary A is able

to distinguish D0 and D1 in CRSE-I, it is able to distinguish

~u0 and ~u1 in SSW, where ~u0 = f~u(D0), ~u1 = f~u(D1), which

indicates:

Adv
SCPA-Data
CRSE-I,A (1λ,∆w

T ) = Adv
SCPA-Data
SSW,A (1λ,∆α

T ) ≤ negl(λ)

We skip the details due to the limitation of space.

C. Security Analysis of CRSE-II

In the following, we first use an example to show the

security weakness of CRSE-II, and capture this weakness

consistently and rigorously in the security games under SCPA

but with additional restrictions.

More specifically, assume only ciphertext C0, C1 and a

permuted search token TKTKTK∗ = (TK∗
1
, ..., TK∗m) are given. In

addition, assume C0 and C1 are both introduced a match

by TK∗TK∗TK∗, but on two different sub-tokens. Then, these two

ciphertexts of the two data records (D0 and D1) are so far

computationally indistinguishable in CRSE-II. It is because

both of the two cases shown in Fig. 18 could happen due to

the additional use of permutation on all the m sub-tokens.

TK
∗

1
TK

∗

2
TK

∗

3
TK

∗

4
TK

∗

m· · ·

C0 C1

TK
∗

1
TK

∗

2
TK

∗

3
TK

∗

4
TK

∗

m· · ·

C0C1

Fig. 18. CRSE-II: An Example with Indistinguishability between C0, C1.

However, if the adversary A still adaptively issues a ci-

phertext request based on a data record D′
j by following the

original restrictions defined in Def. 3, where assuming C ′
j (the

ciphertext of D′
j) introduces a match on the same sub-token as

C0. According to the design of CRSE-II, this match not only

indicates D′
j and D0 are both inside the same circle, but also

further reveals D′
j and D0 are on the boundary of the same

concentric circle. Since D′
j , D0 and D1 are chosen by the

adversary in the security game, it immediately distinguishes

C0 and C1 with the help of C ′
j (as shown in Fig. 19), even

though the permutation is used on all the m sub-tokens.

TK
∗

1
TK

∗

2
TK

∗

3
TK

∗

4
TK

∗

m· · ·

C0 C1C ′

j

TK
∗

1
TK
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2
TK

∗

3
TK

∗

4
TK

∗

m· · ·

C0C1 C ′

j

Fig. 19. An Example of CRSE-II with distinguishability between C0, C1.

Therefore, CRSE-II is not data secure under SCPA with

the similar cases above. In fact, we can capture this weakness

consistently in the security games under SCPA by adding

additional restrictions in the Phase 1 compared to the original

definitions in Def. 3 and Def. 2. Specifically, with the two

submitted points D0 and D1 in Init, the Phase 1 of the data

security game of CRSE-II under SCPA are described as:

Phase 1: The adversary adaptively issues a number of

requests, where each request is one of the two following types:

• Ciphertext Request: On the jth ciphertext request, the ad-

versary outputs a data record D′
j , where D′

j ∈ ∆w
T . The

challenger responses with a ciphertext C ′
j = Enc(SK, D′

j)
is subjected to the following restriction:

1) If (D0 ∈ Qi) ∧ (D1 ∈ Qi), then D′
j /∈ Qi, for any

previous token request of Qi,

• Token Request: On the jth token request, the adversary

outputs a circular range query Qj , where Qj ⊆ ∆w
T .

The challenger responses with a search token TKj =
GenToken(SK, Qj), where Qj is subjected to the follow-

ing restrictions:

1) L(D0, Qj) = L(D1, Qj);
2) (D0 ∈ Qj) ∧ (D1 ∈ Qj)∧(D′

i /∈ Qj) OR (D0 /∈
Qj) ∧ (D1 /∈ Qj), for any previous ciphertext re-

quest of D′
i;

with 1) AND 2).
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Except Phase 1, the rest descriptions of this data security game

under SCPA are as the same as the ones in Def. 3.

Similarly, we can also capture the corresponding weakness

for query privacy by describing the query security game of

CRSE-II under SCPA with additional restrictions in Phase 1

based on Def. 2. Specifically, with the two submitted queries

Q0 and Q1 in Init, we have

Phase 1: The adversary adaptively issues a number of

requests, where each request is one of the two following types:

• Ciphertext Request: On the jth ciphertext request, the ad-

versary outputs a data record Dj , where Dj ∈ ∆w
T . The

challenger responses with a ciphertext Cj = Enc(SK, Dj)
is subjected to the following restriction:

1) L(Dj , Q0) = L(Dj , Q1);
2) (Dj ∈ Q0) ∧ (Dj ∈ Q1)∧(D′

i /∈ Q0) ∧ (D′
i /∈ Q1)

OR (Dj /∈ Q0) ∧ (Dj /∈ Q1), for any previous

ciphertext request of D′
i;

with 1) AND 2).

• Token Request: On the jth token request, the adversary

outputs a circular range query Q′
j , where Q′

j ⊆ ∆w
T .

The challenger responses with a search token TKj =
GenToken(SK, Q′

j).

Except Phase 1, the rest descriptions of this query security

game under SCPA are as the same as the ones in Def. 2.

Since CRSE-II is essentially built based on SSW as well,

we can still use similar approaches as we did in the security

proofs of CRSE-I to demonstrate the security of CRSE-II.

Specifically, we can still simulate the security games of CRSE-

II with an adversary A in the security games of SSW, and

prove that if adversary A is able to break the security games,

it is equivalent to break the security games of SSW, which

contradicts to the assumption that SSW is secure in terms of

data privacy and query privacy. Due to space limitations, we

skip further details.

D. Security Analysis on a Dataset

The encryption with our design on a dataset (i.e., multiple

data records) is essentially a case of multiple encryptions.

And the security of the multiple encryptions of CRSE-I or

CRSE-II can be proved based on the following claim from

the textbook (Chapter 3, Claim 3.23) [29].

Claim 1: Any symmetric-key encryption scheme that has

indistinguishable encryptions under a Chosen-Plaintext At-

tack also has indistinguishable multiple encryptions under a

Chosen-Plaintext Attack.

Specifically, since CRSE-I (or CRSE-II) is data secure and

query secure under Selective Chosen-Plaintext Attacks (which

is a weak version of Chosen-Plaintext Attacks) and it is

symmetric-key based, then the multiple encryptions of CRSE-I

(or CRSE-II) on a dataset is also data secure and query secure

under Selective Chosen-Plaintext Attacks.


