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Abstract—Passive monitoring by distributed wireless sniffers
has been used to strategically capture the network traffic,
as the basis of automatic network diagnosis. However, the
traditional monitoring techniques fall short in cognitive radio
networks (CRNs) due to the much larger number of channels
to be monitored, and the secondary users’ channel availability
uncertainty imposed by primary user activities. To better serve
CRNs, we propose a systematic passive monitoring framework
for traffic collection using a limited number of sniffers in Wi-
Fi like CRNs. We jointly consider primary user activity and
secondary user channel access pattern to optimize the traffic
capturing strategy. In particular, we exploit a non-parametric
density estimation method to learn and predict secondary users’
access pattern in an online fashion, which rapidly adapts to
the users’ dynamic behaviors and supports accurate estimation
of merged access patterns from multiple users. We also design
near-optimal monitoring algorithms that maximize two levels of
quality-of-monitoring goals respectively, based on the predicted
channel access patterns. The simulations and experiments show
that our proposed framework outperforms the existing schemes
significantly.

I. INTRODUCTION

Cognitive Radio (CR) has been envisioned as a new
paradigm to better utilize the spectrum resources, by allow-
ing unlicensed or secondary users (SUs) to opportunistically
access the licensed bands, as long as they do not cause any
interference to licensed or primary users (PUs). While most
of the prior research in CRNs focused on the problem of
establishing a single link between SUs [1], recent research
has gone beyond a single link to identify the challenges
of implementing a Wi-Fi like CR network [2] consisting
of secondary Access Points (APs) associated with multiple
secondary clients.

Along with the technical innovations to enable practical CR
communications, the security of CR networks has recently
aroused many interests [3], most of which focused on securing
the enabling technologies such as spectrum sensing [4], incum-
bent identification, etc. On the other hand, malicious network
activities, such as false data injection attacks, Denial of Service
(DoS) attacks, have posed serious threats to wireless networks,
which will result in significant performance degradation of CR
communications. However, the detection of these activities in
CRNs remains largely untouched in the literature. Network
forensics is a viable method to detect anomalous network be-
haviors through traffic monitoring and analysis. As the quality
of network forensics mainly depends on that of traffic moni-
toring, it is non-trivial to build a traffic monitoring framework
with excellent monitoring performance. Passive monitoring
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has been used to measure Wi-Fi networks [5]-[7] using a
dedicated set of hardware devices, called sniffers. It has been
shown to complement the wire side monitoring by gathering
detailed PHY/MAC information. In this paper, we consider the
construction of a passive monitoring framework for Wi-Fi like
CR networks, or “WhiteFi” networks for short.

However, passive monitoring becomes a challenging task
in WhiteFi networks. First, WhiteFi networks have a much
wider spectrum (50M H 2-698 M H z) than traditional wireless
networks. It is therefore infeasible to deploy one sniffer
for each channel. As a result, the sniffers have to decide
which subsets of channels they will operate on, referred
to as sniffer channel assignment problem. Second, the SUs
have to vacate the channels immediately when the PUs start
transmissions on the corresponding channels. This inevitable
channel switching behavior of SUs potentially complicates
the sniffers’ strategies to capture SUs’ traffic. Last but not
the least, the network traffic in each channel comes from
multiple SUs, who share the available spectrum by following
a certain medium access control (MAC) mechanism. Thus, the
traffic pattern observed by the sniffers is highly dynamic and
unpredictable, further complicating the sniffers’ monitoring
strategies.

To meet these challenges, we utilize a non-parametric den-
sity estimation method to model SUs’ channel usage pattern.
This method makes no assumptions on the unknown distribu-
tion of channel access pattern, thus offers accurate and flexible
models which can be updated in an online fashion with little
complexity. Moreover, we design a sliding window method to
perform online learning of data dynamics, and an accumulative
combination method to further improve modeling accuracy.
Then, the proposed monitoring framework takes inputs from
SUs’ channel usage model to construct monitoring strategies.

In this paper, we consider two levels of monitoring objec-
tives: frame-level and user-level, to serve different network
diagnostic problems. The frame-level objective can be in-
terpreted as maximizing the frame-level quality-of-monitoring
(FL-QoM), defined as the amount of captured MAC frames of
interest, due to their significance for the subsequent aggregated
traffic analysis [7]. The user-level objective is to maximize
the user-level quality-of-monitoring (UL-QoM), defined as
the expected number of active users monitored, which can
facilitate user behavior analysis [8]. We cast the monitoring
optimization problem as a sniffer channel assignment problem
with objective of maximizing the corresponding QoMs.

To the best of our knowledge, this is the first work to
investigate passive monitoring strategies for Wi-Fi like CR
networks. In this paper, we make the following contributions:
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(1) We design a general framework to monitor the WhiteFi
networks, which jointly considers the channel availability
and secondary user access pattern. In particular, we de-
sign an online non-parametric density estimation mechanism
to model the secondary user channel activity, which is able to
support dynamic and complex access patterns.

(2) We formulate the sniffer channel assignment problems
as integer programming (IP) problems by incorporating the
channel switching costs with the QoM objective, for which we
provide algorithms to optimize two different levels of QoMs
respectively.

(3) We conduct extensive simulations and experiments to
validate our statistical model and monitoring framework.

II. RELATED WORK

Passive monitoring in wireless networks has been an active
research area. Some recent work investigated the problem of
optimal sniffer channel assignment to maximize the amount
of monitored information. Shin et al. [9] considered to obtain
optimal strategies by selecting a limited number of sniffers
to monitor multiple channels in wireless mesh networks, in
which they formulate the sniffer channel assignment problem
as a maximal coverage problem and design approximation
algorithms to solve this problem. In [10], Chhetri et al. further
extended the preceding work by taking into account the users’
access patterns. They proposed two monitoring models: user-
centric model and sniffer-centric model. However, they assume
the statistics for different users’ activities are known. Recently,
Arora et al. [11] proposed to use multi-armed bandit to
perform sequential learning for the unknown channel statistics,
which can be used to facilitate optimal channel assignments.
However, multi-armed bandit is too complex to be used for
online and efficient channel assignments. Moreover, they only
consider traditional wireless networks. Note that all the above
work consider maximizing the number of active users covered
by the sniffers, while we further consider to maximize the
number of captured frames.

Chen et al. studied frame capturing problem for network
forensics in CRNs [12], in which support vector regression
(SVR) method is employed to predict the frame arrival time
to guide channel assignments. They have similar objectives
as ours, however, our method has the following advantages:
1) SVR method requires a time consuming training phase,
while we utilize density estimation to produce new estimates
in an online fashion avoiding of the expensive training and
retraining phases; 2) SVR method falls short of dealing with
interleaved traffic from multiple users, which corresponds to
dynamic traffic statistics, while our scheme can adapt promptly
to the traffic dynamics; 3) their monitoring framework has poor
performance when the monitored channels carry high data
rate traffic, because of frequent channel switching behavior
induced by their heuristic channel assignments. In contrast,
as we jointly consider channel switching costs and frame
capturing gains to optimize channel assignments, our method
can achieve better performance with fast traffic flows.

ITI. SYSTEM MODEL

In this section, we describe the monitoring system model

for CR networks. We consider CR networks with coexisting

PUs and SUs. The most common PUs are TV towers and
wireless microphones (WMs). As PUs’ networks are regulated
by service providers or specific WM users, they are out of the
interests of our monitoring system. Instead, our monitoring
system is interested in the network traffic from SUs including
APs and clients who form a WhiteFi network, as illustrated
in Fig. 1. In WhiteFi networks, multiple clients share their
working channel decided by the AP using widely adopted
CSMA/CA mechanism. We assume channel availability statis-
tics are not available to both SUs and sniffers, so we require
both entities to perform spectrum sensing periodically with
assumed perfect accuracy.

Inside one monitoring area, we assign a certain number
of sniffers to sense channels and capture packets. Each snif-
fer is equipped with single antenna, which allows him to
sense/capture traffic over a single channel at one time. We
assume different APs in the monitoring area pick different
working channels to avoid interference, and the sniffers can
overhear all the inbound and outbound traffic from APs inside
their monitoring area. Similar to [12], some sniffers are used as
dedicated inspection sniffers that periodically sense channels
to gain channel usage statistics, while other sniffers called
operation sniffers are responsible for capturing information.
All the sniffers are connected to a central server for central-
ized decision making. The monitoring system architecture is
demonstrated in Fig. 2. Each inspection sniffer is assigned
multiple channels to scan. A sensing slot is a period during
which the inspection sniffer scans through all the assigned
channels. In the following, a slot stands for the sensing slot
unless otherwise noted.

Next, we will describe the sensing outcomes of inspection
sniffers, which are closely related to the duration of a sensing
slot. A sensing slot is composed of channel sensing time and
channel switching time, whose length depends on the number
of channels to be scanned. Typically, channel sensing time is
approximately 1ms per channel using energy detection, while
channel switching for a commodity 802.11b/¢g network card
takes about 1ms — 5ms [13]. Therefore, we assume each
inspection sniffer spends 2ms for sensing one channel and
switching to another channel. If each inspection sniffer is
assigned ten channels to scan, one sensing slot will be 20ms
long.

Therefore, during each slot, the inspection sniffer scans ten
channels to reveal their channel states (busy/idle). Here, busy
indicates the channel is occupied by SUs, while ¢dle represents
the opposite. Let X/ be the state of channel i at k-th sensing
slot, which takes only binary values “1/0”, corresponding to
busy/idle state (in the following, we omit the subscript ¢ for
i-th channel). Then, the sequential data X (k = 1,2,...)
are used to calculate the active slot interarrival time for each
channel, which is defined as the time interval between two
consecutive busy slots. Therefore, in our design, the inspec-
tion sniffers produce the active slot interarrival time as their
outcomes, which will be used as the inputs of channel usage
model as explained in Section IV.

Note that one straightforward way of meeting frame cap-
turing objectives is to predict SUs’ frame arrival time by
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Fig. 1: Wi-Fi like Cognitive Radio Net-
work Architecture
modeling frame arrival pattern. However, it is infeasible to
derive optimized channel assignments based on predicted
frame arrival time [12]. Therefore, instead of directly modeling
frame arrival pattern, we model the active slot interarrival
pattern as the basis of our monitoring framework. The major
difference between the above two patterns is that active slot
interarrival pattern is slot-wise rather than frame-wise. In order
to motivate/justify the adoption of active slot interarrival time,
we performed a real-world experiment using BitTorrent and
FTP downloading traffic in operational 802.11g WLAN, with
results shown in Fig. 3. We can see that the proportion of
frames accumulated within certain active slot interarrival time
are comparable to that accumulated within the original frame
interarrival time (most of the frames are concentrated within
small interarrival time region), which indicates active slot
interarrival time characterizes channel usage pattern as good
as frame interarrival time.

Obviously, if the slot length becomes shorter, active slot
interarrival pattern will approximate frame interarrival pattern
more closely. However, channel scan with a shorter sensing
slot requires more inspection sniffers or faster channel sensing
and switching operation. Additionally, we infer from Fig. 3
that an operative 802.11g WLAN has a high traffic load, since
most of the frame interarrival time is rather short.

IV. USER CHANNEL ACCESS PREDICTION

In this section, we propose a unified model to estimate
secondary user channel access pattern, as the front-end of our
monitoring framework. In order to build the unified model,
we first study primary user detection mechanism, and then we
design an online non-parametric density estimation mechanism
to predict SUs’ slotted channel access probability (SC AP)
pertained to each sensing slot. As its name suggests, slotted
channel access probability is defined as the probability of SUs’
channel access during each slot.

A. Primary User Detection

The sniffers are required to detect PUs’ activity in order not
to waste time and energy listening on the primary user occu-
pied channels. Energy detection is the most straightforward
way for the sniffers to detect PUs’ appearance. We adopt the
energy detection mechanism in our framework due to its sim-
plicity. On the other hand, another alternative mechanism has
a better performance but a higher complexity. It models PUs’
activities observed by the inspection sniffers as an alternating
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renewal process, and then predicts PUs’ idle probability using
maximal likelihood estimation or Bayesian estimation [14].
Compared with energy detection, this mechanism provides
PUs’ activity information ahead of time, which can further
improve the monitoring performance if the model retains a
high accuracy.

B. Secondary User Channel Usage Model

In this section, we propose a framework to estimate the
secondary users’ SCAP at each slot by modeling the active
slot interarrival time distribution. The SUs’ channel usage
pattern in WhiteFi networks is complicated, mainly due to
the dynamics brought by time-evolving mixed traffic from
multiple SUs with channel switching behavior.

1) Non-parametric Density Estimation Model: Instead of
assuming a specific active slot interarrival time distribution
for quantifying SUs’ traffic pattern, we propose a SU chan-
nel usage model using the non-parametric density estimation
method to better capture SUs’ traffic dynamics. As mentioned
previously, different from support vector machine and neural
network based methods, density estimation method does not
involve a time-consuming training phase, which makes it
appropriate for online prediction. More importantly, this non-
parametric approach provides a greater flexibility and accuracy
in modeling a given data set, compared with other parametric
approaches. Currently, one of the most popular non-parametric
density estimation approaches is Kernel Density Estimator
(KDE) with a Gaussian kernel function [15]. Given n in-
dependent realizations X; (¢ = 1,2,...,n) drawn from an
unknown probability density function (pdf) f(z), the Gaussian
KDE with bandwidth o is defined as:

R 1 <&

j0) = — Kg(x, X;,0),x € R, 1
f(x;0) n; oz, X, 0),z (1)
where

Ka(z, X, 0) = e~ (= X)*/(25%), @)

2o
from which we can see that Gaussian KDE is essentially the

overall sum of Gaussian kernels centered at location X; with
an equal bandwidth o.

In fact, the setting of o is of utmost importance for the den-
sity estimation performance. A classic measure to determine
the optimal o is Mean Integrated Squared Error (MISE):

MISE(j(0) = Elf(wio) — [@), &)
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where f(z) is the underlying genuine distribution. Assuming a
large sample set, we can obtain an asymptotic approximation
to MISE, denoted as asymptotic MISE (AMISE), written as
[15]: .

2n\/mo’ @
where f”(z) is the second derivative of f(z), ||-|| denotes the
Euclidean norm on R. Thus, the asymptotic optimal value of

*

o* is obtained by minimizing AMISE:

N 1
o = (7=
NCTIEl:
In order to compute o* from Eq. 5, we need to approx-
imate ||f”(z)||> by estimating the general form | fU)(x)||?

for arbitrary j. The corresponding optimal solution o} w.r.t.

[ £9)(2)||?> complies with a recursive form, namely of =
vj(0711), where ~y; is a complicated formula given in [15].
Then, a fixed point iteration method is employed to compute
o5. This KDE algorithm provides a viable means of auto-
matically selecting optimal bandwidths with superior density
estimation performance.

1
AMISEp)(0) = 20| f"(@)]* +

)1/5. (5)

2) Modeling Active Slot Interarrival Time Distribution:
The KDE collects the data set of active slot interarrival
time measured by inspection sniffers to generate the density
estimates. Since the distribution of collected data sets may vary
over time, the modeling accuracy of the KDE will be affected
by taking into account outdated historic data. Thereby, only the
most recent data should be imported into the modeling process.
On the other hand, the modeling accuracy also largely depends
on the size of the input data sets. If we only consider the
most recent observations by discarding all the historical ones,
the modeling accuracy will be brought down significantly.
Furthermore, the amount of inputs to KDE has great impacts
on its computational efficiency. Generally speaking, KDE with
a small data set runs more efficiently than that with a large
data set. Therefore, the major issue of this model is to decide
how much historical data should be incorporated for density
estimation, in order to provide an accurate and efficient model.

Now we present our proposed online non-parametric density
estimation protocol. The basic idea is to use sliding window
method to perform online updating of the density estimates,
and to incorporate additional historic data sets for improving
the estimation accuracy. The whole protocol is presented in
Algorithm 1, which is repeated for each channel. Whenever
a new observation arrives, the online estimation model only
takes the data in a sliding window of size W, i.e., the data
sets exporting to the KDE only hold the most recent W
observations. The setting of window size W 1is pertained to
the data dynamics. In other words, if the distribution of data
is changing very frequently, a smaller W is more favorable
for maintaining a fast reaction to the dynamic data; otherwise,
a larger W can be selected to improve estimation accuracy.
In the WhiteFi network scenario, we set a relatively small W,
since the data distribution will change more dynamically than
that in the traditional wireless networks.

One of the most favorable features of sliding window
method is attributed to its support for online learning of density

estimates. As time advances, our density estimator will take
different sets of data falling inside the sliding window to
compute the latest estimate. Therefore, our model enables the
effective characterization of the time-evolving active slot inter-
arrival distribution, and allows us to update density estimates
with every newly arrival observation.

However, the major drawback of the sliding window method
resides in the following fact: the sliding window to specify
input data also deteriorates the accuracy of KDE, because the
size of sliding window restricts the number of observations
(only W). Hence, we need to improve the estimates by
expanding the input data size.

As depicted in Algorithm 1, we propose to combine the data
sets from multiple sliding windows according to some well-
defined criteria, in order to enlarge the sample space. How
to define such criteria for merging sample space is crucial
to the ultimate estimation performance. At first glance, more
recent windows of data sets should have higher relevance to
current window. Therefore, one intuitive method to achieve
more accurate estimation is to combine the most recent density
estimates from latest windows to capture the data freshness
[16]. However, because of the uncertain channel availability
and underlying MAC protocol, multiple clients may generate
interleaved traffic due to alternate channel accesses. Therefore,
the most recent windows may not necessarily reflect the
underlying density of current window best, while some earlier
historical data originating from the same clients pertaining
to the current window might do. Accordingly, we propose
an accumulative combination method to make the decision
of merging historical data based on statistical correlation
among the samples. As shown in Algorithm 1, we sim-
plify the computation of statistical correlations by employing
Kolmogorov-Smirnov test (KS test). KS test is character-
ized as a non-parametric inferential statistical method, since
it makes no assumption about the distributions of samples, thus
is completely data-driven. The Kolmogorov-Smirnov statistics
is defined as follows:

Definition 1. Consider two sets of observations Z, and Zs,
with ny = |Z1| and ny = |Z3| samples. The Kolmogorov-
Smirnov statistics is defined as:

Dzlﬁzz = S'U/p$|F1($) - F2($)|,
where Fy and F5 represent the empirical cumulative distribu-
tion functions (cdfs) of the samples in Z1 and Z,, respectively.

Then, given D, .,, we can confirm two sample sets are
from the same distribution with a certain significance level
n1ns

/3  if ni+mnz
to a well-defined table [17]. Note that cdf is a byproduct
of the KDE. After KS test, we combine all the data sets
passing the tests into one single data set, which is provided
for the KDE to update density estimates. To tradeoff the
performance improvement and computational overhead, we
limit the number of KS tests by only preserving the previous
n,, windows of data sets for each channel. Meanwhile, two
consecutive windows only differ with one data point, thus it
becomes more beneficial to test windows with interval of ¢,,

D, ., < Kg, where Kg can be set according
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Algorithm 1 Online non-parametric density estimation proto-
col

Input: W, n, tw, current sensing result Xy,.

If Xp!=0
Calculate the new observed active slot interarrival time Tjp¢(k);
Update the current data set Z(k) = {Tint(k), ..., Tine(k — W +
D}

: Update the input data set Z;,, = Z(k);

BN

5

6: Update the current density estimate f(k) = KDE(Z(k));
7: for i<— 1 to N

8: Perform KS test: KStest(Z(k), Z(k — i - tw));

9: If pass KS test
10: Update the input data set Z;, = {Z(k) U Z(k —i-tw)};
11: end

12: Update the current density estimate f (k) = KDE(Zin);

13: else return.

samples. In this way, every previous window passing the KS
test can export t,, more samples into the merged data set (see
line 10 of Algorithm 1).

Consequently, we derive an accurate density estimate for
active slot interarrival time distribution at each channel, by
online learning of data dynamics and cumulative combination
of historic data.

3) Computing Slotted Channel Access Probability: The
problem we are going to address in this section is how to
estimate the SC AP based on the predicted distribution of
active slot interarrival time. In theory, the predicted secondary
user SCAP at (k + 1)-th slot should be represented as
SCAP(k + 1) = Pr(Xg4+1 = 1|X3,...,X%), which takes
all the historic channel states into consideration. However, in
practice, the predicted SC AP can be written as follows:

PT(Xk+1 = ].|AX;c = 1),if Xk = ].,
PT’(Xk+1 = 1|Xk = 0, ...,Xj+1 = O,Xj = 1),
if X =0.

SCAP

2 F(k)dt,if Xi =1
S (et X, = 0,

where A is defined as the sensing slot length. The algorithm
to compute the SC AP for each slot is given in Algorithm 2.
SC AP provides an appropriate measure for quantifying the
secondary user channel usage pattern, which takes into account
the channel availability, SUs’ current activity, and SUs’ traffic
pattern learnt from their recent activities. The major goal of
the inspection sniffers is to predict SCAP(k + 1) that guides
the operation sniffers’ channel assignment strategies, which is
the main focus of the following section.

Q)

V. NEAR-OPTIMAL MONITORING MECHANISM

The monitoring mechanism considers the problem of sniffer
channel assignment to maximize two different levels of QoMs,
which is carried out by the central server. In particular, at
k-th slot, the central server collects all the channel usage
information gathered by the inspection sniffers to produce
a prediction of SCAP(k + 1) for all the channels simulta-
neously. This predicted SCAP is then leveraged to provide
optimized channel assignments for the next slot.

Although channel switching enables the sniffers to capture
channel dynamics adaptively, its negative effects should not

Algorithm 2 The Computation of Slotted Channel Access
Probability

1: Input: current density estimate f (k), current sensing result Xy, the
sensing slot length A.
. Initialization: IdleCount = 1
If X3! =
Compute SCAP(k +1) = fOA f(k)dt;
Reset IdleCount = 1;
else
Update IdleCount = IdleCount + 1;
Compute SCAP(k + 1) = féldlecoum'A) f(k)dt;

end

R A A T

be neglected in computing QoMs. We claim that channel
switching indeed produces non-negligible overhead in practice.
For example, as mentioned previously, the 802.11b/g wireless
cards take approximately 1 — 5ms for one channel switching
operation. If one slot lasts 20ms, at most 1/4 frames in the
slot will be missing during the channel switching operation
which constitutes a non-negligible fraction of frames. To be
more specific, the typical frame interarrival time in a 10Mbps
wireless network is 0.1ms (assume 1000 bit frame). Then,
during the 5ms channel switching, we may lose 50 frames,
nearly 1/4 of the total frames in this slot. In addition to that,
frequent channel switching also raises energy costs. These are
the reasons why we integrate channel switching costs into
the optimization objectives. In the following, we show our
formulation of sniffer channel assignment problem with two
levels of QoMs, respectively.
A. Frame-level Quality-of-Monitoring Optimization

The goal of FL-QoM optimization is to maximize the
number of captured frames, given a set of channels and
operation sniffers inside one monitoring area. In section III,
we show that active slot interarrival pattern can represent
frame arrival pattern, so that the number of captured frames
during K slots from a certain channel can be written as:

Ny = ZkK:O(]Ik . n(fk)) where I}, is an indicator indicating

whether the k-th slot is active, n;k) denotes the number of
frames inside the k-th slot. Therefore, instead of directly
maximizing the number of captured frames, we transform FL-
QoM into an objective of maximizing the number of active
slots captured. For notation convenience, let us define index
sets i € N = {1,...,N}, s € S, = {1,...,M} for
indexing channels and operation sniffers respectively. The
optimization problem can be formulated as the following
integer programming (IP) problem:
N

maximize ZSCAPZ-(k—l—l)-yi(kz—i-l)— (7
=1
M N 1
« Zlze (k4 1) — 2o 1 (K)]?
;;2[ ik +1) = 25,4 (K)]
N
subject to Y zi(k) < 1,Vs € Sy, k (8)
1=1
M
> zeilk) < 1L,Vie Nk ©)

1

S
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M

yi(k) = zei(k),Vi € Nk (10)
s=1

yi(k), zs,i(k) € {0,1},Vs € Spp,i € N k. (11)

Each operation sniffer in the set S, is associated with a
binary decision vector z,;(k) € {0,1}, i« € N, which is
called sniffer channel assignment indicator, with z;;(k) = 1
if the sniffer is assigned to channel ¢ at slot k; 0 otherwise.
And y;(k) is the binary variable indicating whether or not the
channel 7 is monitored by some sniffer. The IP formulation is
supposed to run iteratively: at k-th slot, after obtaining z; ; (k)
and predicted SCAP;(k + 1), we can acquire z,;(k + 1) by
solving the IP problem. Clearly, the sniffer channel assignment
is updated once every slot.

Note that the objective function Eq. (7) is comprised of
two parts: the positive part represents the average number
of captured active slots, while the negative part indicates the
channel switching costs. For simplicity, we use the number
of channel switches between every two subsequent slots to
approximate the channel switching costs. In addition, we set a
switching cost weight « to represent the relative significance
of channel switching costs w.r.t. the gains obtained from
captured slots, which is a constant value residing within [0, 1].
Here, we define « as the ratio of channel switching duration to
the slot duration. In the previous example with 5ms channel
switching and 20ms slot, we have « = 1/4. However, the
definition of o can be further extended to incorporate more
sophisticated metrics for channel switching costs.

The constraints (8), (9) arise due to the facts that one sniffer
can only monitor one channel and one channel is better to be
covered by one sniffer. In particular, we put forward the second
constraint, because if we allow multiple sniffers to listen over
the same channel, their captured frames will provide duplicate
information. This IP problem can be viewed as a NP-hard
problem following the proof in [10], thus we need to find an
approximation algorithm to solve the IP problem.

LP rounding algorithm has been adopted to solve the
IP problem [9], [10]. This algorithm solves the LP-
relaxation of the IP formulation, and then rounds the frac-
tional results into integral solutions using for example the
probabilistic rounding algorithm (PRA) [18]. However, this
algorithm is only applicable to linear program problem, while
in our formulation, the objective function contains some
quadratic terms. We then reformulate the objective function
to remove the nonlinear terms. As z,;(k)? = 2, ;(k) when
zs,i(k) € {0, 1}, the objective function Eq. (7) can be rewritten

into a linear form as follows:
N

> CAP(k+1)-yi(k +1)—
i=1
M N
o —[zs.i(k+ 1)+ 2s4(k) — 225 i (k) - z5.i(k + 1
;;2[,( )+ 2s,i(F) i(R) - 2si(k + 1))
Note that z (k) is already known before solving optimiza-
tion problem. The PRA algorithm has been proven [18] to
produce an optimized sniffer channel assignment in linear

time. However, the execution of PRA disregards the con-
straint (9) completely. Hence, the resulted channel assignment
obtained from PRA cannot prevent multiple sniffers from
listening on the same channel. We define this problem as
channel conflict problem, and the sniffers assigned to the same
channel as conflict sniffer set.

In response, we propose a heuristic strategy to address the
channel conflict problem, which takes the following steps:

(1) Find all the conflict sniffer sets in the solution obtained
from the PRA algorithm;

(2) Pick one sniffer in each conflict sniffer set randomly,
and fix it to the conflicted channel;

(3) Run LP rounding algorithm again to get a new solution;

(4) Test whether the new solution contains any conflict
sniffer set: if yes, go to step (1); otherwise return the solution.

The above heuristic channel assignment strategy guarantees
to provide a valid channel assignment for all the sniffers within
linear time, which turns out to be a near-optimal solution for
the sniffer channel assignment problem. Another alternative
strategy is to exhaustively fix every sniffer in the conflict
sniffer set to the conflicted channel, and search for the best
assignment among all the valid assignment possibilities. How-
ever, such strategy suffers from exponential time complexity
in the worst case, thus is unfavorable.

We call the channels to be assigned as potential channels.
The resulted channel assignment strategy can provide the
sniffers with the assignments of potential channels for the next
slot. Then, the central server checks every potential channel
to determine whether it has already been monitored: if yes, it
skips assigning this channel; if no, it selects a sniffer which is
not listening on any other potential channels to monitor this
channel. In this way, the channel switching costs are further
alleviated.

B. User-level Quality-of-Monitoring Optimization

The objective of UL-QoM optimization is to maximize the
expected number of active users monitored. In order to capture
the user-level information, it is indispensable to identify the
source of each frame, even encrypted frames. Let U; (k) for i €
N denote the number of active users operating in channel 7 at
the k-th slot. We assume once a sniffer is tuned into a channel,
it covers all the active users operating in this channel. We do
not consider the channel switching costs in this case, because
there are typically multiple frames from a single user so that
a small number of frame loss due to channel switching does
not have a big impact on the number of users measured. The
UL-QoM optimization problem can be casted as the following
IP problem:

N

maximize Y Uj(k) - SCAP,(k+1) - y;(k+1) (12)
1=1

subject to  (8) — (11).

The above optimization problem can be solved using exactly
the same approximation algorithm illustrated in the previous
section. Note that U;(k) can be measured by counting the
number of different MAC addresses from frames passing
through the AP running in channel ¢ within time slot k. In
practice, U; (k) may not be available at the beginning of the
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k-th slot, so it can be approximated by the measurement
of U;(k — 1), assuming users remain operating in the same
channel for the next time slot. Small errors in estimating
U, (k) would not affect the performance much. In the extreme
case when false MAC addresses are inserted by the attackers,
more sophisticated approach is required. For instance, machine
learning methods to perform Internet traffic classification [19]
can be used to differentiate different users based on their
identified traffic types. This is out of the scope of this paper.
C. Complexity Analysis

We analyze the complexity of the above approximation
algorithms. Two most complex steps involved in the problem
solving are: (1) solving LP relaxation, and (2) executing
LP rounding algorithm. We notice that the above two IP
problems contain (N + M N) unknown variables. Therefore,
the complexity of solving the LP relaxation of IP formulation
is given as O((N + MN)2/log(N + MN)) [9], which is
determined by the complexity of LP solver. On the other hand,
the PRA algorithm has the linear complexity, governed by the
input vector size (M N) [18]. Our heuristic strategy to solve
channel conflict problem has to call PRA algorithm at most NV
times in the worst case scenario. Thus, the overall LP rounding
algorithm takes the complexity O(M N?). Hence, solving the
LP relaxation dominates the overall complexity, resulting in
an overall complexity of O((N +MN)3/log(N + M N)) for
solving the optimization problems.

VI. EVALUATION

In this section, we conduct extensive simulations and exper-
iments to evaluate the performance of our passive monitoring
framework in CRNs. The simulations leverage synthetic traces,
which allow us to vary the number of channels and sniffers,
as well as the traffic patterns of different users. We also carry
out experiments and test the performance of our monitoring
framework on real traces collected from the experiments.
Aside from our proposed passive monitoring framework, we
also implemented two baseline algorithms and one previously
proposed algorithm, listed as follows, for performance com-
parison purposes.

e Random channel assignment: the sniffer channels are
randomly assigned.

e Greedy channel assignment: the sniffers are always
assigned to the predicted busiest channels based on SC AP at
every sensing slot, i.e. the channels with the largest SCAP.

e Support Vector Regression (SVR) channel assignment:
the sniffers are assigned to the channels in which the next
frame is predicted to arrive within a short period based on the
frame interarrival time predication using SVR method [12].

We assume the PUs’ presence can be detected promptly
by both inspection and operation sniffers, as illustrated in
section IV-A. In the following sections, we first evaluate the
performance of the proposed secondary user channel usage
model, and then the frame capturing performance and user
capturing performance are examined.

A. Performance of Secondary User Channel Usage Model

The proposed secondary user channel usage model utilizes
the online non-parametric density estimation to achieve an
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Fig. 4: Performance of Secondary User Channel Usage Model
(W=50,n,=10,t,,=25)
accurate estimated distribution of active slot interarrival time.
As mentioned in section IV-B, our channel model uses sliding
window technique to track the dynamic traffic patterns of SUs.
We generate a data set with changing data distribution (pdf
of the data set changes from e™* to %6*%). The tracking
performance is shown in Fig. 4(a), from which we can see
that the estimated distribution is gradually changing from
the original data distribution to the current data distribution.
The transition happens when the current window takes data
from both distributions and completes when the whole current
window only contains data from the new distribution. The
tracking speed is determined by the window size, i.e., larger
window size will cause more delays during the transition.
However, too small window size will affect the modeling
accuracy, which motivates the combination of historical sam-
ples. Recall that only the data sets passing the KS tests can be
combined to improve the estimation accuracy. Fig. 4(b) shows
the performance comparison between the density estimates
with data combining and that without data combining. We can
see the significant improvement brought by the accumulative
data combination.

B. Performance of Frame Capturing

In this section, the frame capturing performances of dif-
ferent channel assignment algorithms are evaluated. First,
we generate synthetic traces of different distributions with
either i.i.d. samples or correlated samples, to evaluate the
slot capture rate, frame capture rate and number of channel
switches under different settings. Slot capture rate is defined
as the ratio of the number of captured active slots versus
the overall number of active slots up to the current time.
Frame capture rate is defined as the ratio of the number of
captured frames versus the overall number of frames passing
through all the channels up to the current time. Then, we col-
lect real-world traces from operative WLANSs to simulate the
scenarios in WhiteFi networks, and evaluate our monitoring
framework by comparing its frame capturing performance with
other algorithms. For all the following evaluations, we measure
the performance of algorithms running through 1000 slots for
multiple rounds.

1) Synthetic Traces: First, we generate synthetic traces with
ii.d. frame interarrival time exponentially distributed. Each
trace corresponds to the traffic generated in one channel with
different mean values to simulate different traffic loads. We
evaluate the capturing performance w.r.t. different switching
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Fig. 5: Performance with Different Methods using Exponentially
Distributed Frame Interarrival Time ((IN, M) represents the case with
N channels and M sniffers)

cost weights a. Generally speaking, one channel switching

causes a penalty of losing « slot, a € [0, 1]. Fig. 5(a) shows the
slot capturing performance with different number of sniffers
and channels. Our channel assignment algorithm always out-
performs the other two algorithms. With the increase of «, the
slot capture rates of both baseline schemes drop down because
of the increasing penalty for channel switching. However, our
scheme with high « will force the sniffers to switch channel
only when the reward from channel switching is higher than
the penalty; otherwise, it keeps the sniffers staying in the
current channels. Therefore, the slot capture rate of our scheme
stays high. We also compare the number of channel switches
in Fig. 5(b). With our scheme, the number of channel switches
drop significantly with the increasing of «, while channel
switch numbers of other schemes are irrelevant to «, thus
keep constant. From the above two figures, we observe that
our scheme is able to achieve superior performance with low
channel switching costs. Note that the frame interarrival data
points are i.i.d. samples from exponential distribution. These
data points are time independent, causing SVR scheme to
perform poorly, so we do not show its performance here.
Second, we use time series data to compare the performance
with SVR scheme, since SVR scheme is supposed to have
superior performance when modeling time series data. We
generate time series data to represent frame interarrival time,
using Gaussian distribution with an exponential correlation
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function. Different mean values of data distributions are used
to represent different traffic loads. We assume the training
process of SVR scheme has already been done, which takes 35
training samples [12]. Fig. 6(a) shows the frame capture rates
of different methods. The SVR scheme performs best when
the channel switching costs are neglected (o« = Oor0.1), which
means the SVR has accurate estimation of frame interarrival
time, when the traffic statistics are stable. However, when o
grows larger than 0.2, the frame capture rate of SVR scheme
drops steadily. Note that the capturing performance of our
scheme also drops a bit due to increasing switching penalty,
and then reverts back to surpass the performance curves of
any other schemes. Fig. 6(b) shows the number of channel
switches, from which we can see SVR methods frequently
switch its channels, because its switching strategy is frame-
wise rather than slot-wise. Still, the switching cost of our
scheme remains the lowest.

Finally, Fig. 7(a) shows the different capturing capabilities
w.r.t. the number of sniffers, the frame capturing performance
of all the methods keeps growing with the increasing number
of sniffers. Our scheme has the highest frame capture rate.
We also compare the channel switching numbers in Fig. 7(b).
With more sniffers, the number of channel switches with
SVR method decreases, due to the increased traffic capturing
capability, while the other methods have less and stabler
number of channel switches.

2) Real Traces: We collect the real traces from 802.11¢g
WLAN network. The traces are captured by a sniffer listening
on the channel established by one AP and client pair running
various applications. The captured traces include both the
uplink traffic to AP and the downlink traffic from AP. We
consider five different types of trace data (FTP, BT, Web
Browsing, Skype Voice and Skype Video). We assign each
trace for one channel, with five channels in total. We evaluate
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the performance with seven channels of real-world traffic,

while the additional two channels contain mixed traffic pattern.
Namely, one is the traffic combined from two clients using
Skype and BT, and the other one is generated from two clients
using Skype and Web Browsing. The performance is shown in
Fig. 8(a) and Fig. 8(b), from which we can see SVR method
performs even worse than random scheme. The reason is that
the SVR method takes a long time for retraining, when the
predicted value has a large deviation from the genuine one,
induced by the highly dynamic real-world traffic. Frequent
retraining and channel switching operations significantly de-
teriorate the capturing capability of SVR method. However,
our scheme retains the best performance, except in the case
of small «, the greedy method performs better since channel
switching only incurs a small penalty. This comparison result
also indicates that our model can accurately capture the traffic
statistics regardless of whether the traffic is interleaved or not.

C. Performance of User Capturing

Finally, we evaluate the performance for maximizing UL-
QoM using synthetic data. We assume different channels con-
tain different numbers of SUs, and the numbers are dynami-
cally changing within certain ranges; also the frame interarrival
time is exponentially distributed, specifying the traffic pattern.
We define Active User Capture Rate as the ratio of number of
active users captured versus the overall number of the active
users appeared in all the channels. The performance of active
user capture rate w.r.t. different number of sniffers is shown
in Fig. 9, from which we notice that our channel assignment
scheme can select best sets of channels to maximize the num-
ber of active users captured for each slot. The result implies
our channel assignment scheme significantly outperforms two
baseline schemes, in terms of user capturing performance. We
plan to examine user capturing performance using real-world
traffic in our future work.

VII. CONCLUSION

In this paper, we have introduced a systematic passive moni-

toring framework for Wi-Fi like CRNs to maximize two levels

of QoMs incorporating switching costs. Both the primary user
and secondary user channel usage patterns are considered
to optimize the monitoring strategy. Specifically, we propose
an online non-parametric density estimation scheme to learn
and predict the time-evolving mixed traffic pattern from SUs.
Based on the predicted traffic pattern, the optimization prob-
lems of sniffer channel assignment are formulated, for which
we design near-optimal monitoring algorithms. Our simulation
and experimental results both show that our passive monitoring
framework has superior capturing capability with low channel
switching overhead.
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