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Abstract—With the rapid growth of smartphones, mobile crowdsensing emerges as a new paradigm which takes advantage of the

pervasive sensor-embedded smartphones to collect data efficiently. Many auction-based incentive mechanisms have been proposed

to stimulate smartphone users to participate in the mobile crowdsensing applications and systems. However, none of them has taken

into consideration both the bid privacy of smartphone users and the social cost. In this paper, we design two frameworks for privacy-

preserving auction-based incentive mechanisms that also achieve approximate social cost minimization. In the former, each user

submits a bid for a set of tasks it is willing to perform; in the latter, each user submits a bid for each task in its task set. Both frameworks

select users based on platform-defined score functions. As examples, we propose two score functions, linear and log functions, to

realize the two frameworks. We rigorously prove that both proposed frameworks achieve computational efficiency, individual rationality,

truthfulness, differential privacy, and approximate social cost minimization. In addition, with log score function, the two frameworks are

asymptotically optimal in terms of the social cost. Extensive simulations evaluate the performance of the two frameworks and

demonstrate that our frameworks achieve bid-privacy preservation although sacrificing social cost.

Index Terms—Mobile crowdsensing, incentive mechanism, differential privacy
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1 INTRODUCTION

NOWADAYS, the proliferation of smartphones is chang-
ing people’s daily lives. With the advance of high-

speed 3G/4G networks and more powerful embedded sen-
sors (e.g., camera, accelerometer, compass, etc.), mobile
crowdsensing emerges as a new paradigm which takes
advantage of the pervasive sensor-embedded smartphones
to collect data efficiently.

A typicalmobile crowdsensing system consists of a cloud-
based platform and a large number of smartphone users. The
platform works as a sensing service buyer who posts the
required sensing information and recruits a set of smart-
phone users to provide sensing services. Once selected by
the platform, a smartphone user starts to collect the required
data and sends it back to the platform. The potential effec-
tiveness of mobile crowdsensing, especially with geographi-
cally distributed smartphone users, enables numerous

mobile crowdsensing applications [34], [47], [53]. However,
most of them assume that the smartphone users contribute
to the platform voluntarily. In reality, smartphone users con-
sume their own resources such as battery and sensing time
while completing the sensing tasks. In addition, they might
suffer from the potential privacy disclosure by sharing their
sensed data with personal information (e.g., location tags
and bid price). Therefore, smartphone usersmay be reluctant
to participate in a mobile crowdsensing system and applica-
tion, unless they are paid some rewards to compensate their
resource consumption or potential privacy leaks. Since the
number of participating smartphone users has a significant
impact on the performance of the mobile crowdsensing sys-
tems, it is necessary to stimulate users to join the systems.

Auction is an efficient method to design incentive mecha-
nisms. Many auction-based incentive mechanisms have
been proposed for mobile crowdsensing [46], [47], [49], [51].
They are essentially reverse auctions in which the platform
is the service buyer and the smartphone users are the bid-
ders selling sensing services. In these mechanisms, the ser-
vice buyer selects bidders according to their submitted task-
bid pairs (elaborated in Section 3). The objectives of these
mechanisms focus on either maximizing the total value
gained by the platform or minimizing the total payment to
the selected users. However, none of them takes users’ pri-
vacy into consideration.

In most of the proposed truthful auction-based incentive
mechanisms, bidders are stimulated to bid their true costs,
which are private information of smartphone users. For
transparency, the platform will publish the outcome of the
auction mechanism, which consists of winning bidders and
their payments. Ensuring transparency in the procurement
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procedure is essential to efficiency, as it enhances the com-
petitiveness of public procurement [36]. Meanwhile, it has
been proven by bid sale dealers for years that transparency
leads to profit [37]. The FCC uses auctions to sell the licenses
to transmit signals over specific bands of the electromag-
netic spectrum, and releases the result of each auction
online for transparency [3]. In recent years, many commer-
cial platforms have put more emphasis on transparency as
well, e.g., Auction.com [1], which is a trusted leader in the
web-based real estate auction industry, and eBay [2], which
is a multinational e-commerce corporation.

However, once the true cost of a smartphone user is
reported to the platform, other bidders might infer this pri-
vate information based on the published outcome. This is
known as inference attack [20] (we give two examples in
Section 3). Inference attack has been analyzed in many areas,
e.g., multilevel secure databases [22], data mining [10], web-
based applications [40] and mobile devices [31]. Protecting
users’ bid privacy is important because its disclosure might
also incur threats to users’ other private information, such as
location [25],[44]. In this paper, we focus ondesigning truthful
auction-basedmechanisms to protect users’ bid privacy.

To formalize the notion of users’ bid privacy, we employ
the concept of differential privacy [12]. Intuitively, a mecha-
nism provides differential privacy if the change of one user’s
bid has limited impact on the outcome. We also leverage the
exponential mechanism [33], a technique to design differen-
tially privatemechanisms, to preserve users’ bid privacy.

In this paper, we study the problem of designing truthful
mechanisms, which achieve computational efficiency, indi-
vidual rationality, differential privacy, and approximate
social cost minimization. We consider the scenario where
there is one buyer and multiple sellers. Smartphone users
act as bidders and submit their bids to compete for the
chance of being selected to perform the corresponding
tasks. Besides, smartphone users do not want others to
know their own bid information. We first consider the sin-
gle-bid model in which each user can only submit a set of
tasks. Then we consider the multi-bid model in which each
user can submit a bid for each task in its task set. For each of
these two models, we propose a differentially private truth-
ful auction-based framework, named BidGuard and Bid
Guard-M, respectively. One important component of both
frameworks is a platform-defined score function for select-
ing users. As examples, we propose two score functions to
realize the frameworks.

The main contributions of this paper are as follows:

� In this paper, we propose two frameworks, BidGuard
and BidGuard-M, for privacy-preserving mobile
crowdsensing incentive mechanisms for two differ-
ent models, which achieve computational efficiency,
individual rationality, truthfulness, differential pri-
vacy, and approximate social cost minimization. Spe-
cifically, we design two different score functions,
linear score function and log score function, to realize
this two frameworks.

� With linear score function, BidGuard achieves ð�ðe�
1Þ=e; dÞ-differential privacy and the social cost is at
most gOPT þOðlnnÞ with the probability of at least
1� 1=nOð1Þ, where � > 0 is a constant, d 2 ð0; 12� and g

is the cardinality of the largest user task set, e is the
base of the natural logarithm, OPT is the optimal
social cost, and n is the number of the users. BidG-
uard-M achieves 2m�-differential privacy and the
social cost is at mostOPT þmOðlnnÞwith the proba-
bility of at least 1� 1=nOð1Þ, wherem is the number of
sensing tasks.

� With log score function, BidGuard achieves ð�ðe�
1Þ=e; dÞ-differential privacy and the social cost is at
most 2tHmOPT with the probability of at least 1� e�t

for any constant t > 0, whereHm ¼
Pm

j¼1 1=j, andm
is the number of sensing tasks. BidGuard-M achieves
2m log 1

2
ð 1
1þDÞ�-differential privacy and the social cost

is at most 2tOPT with the probability of at least
1� 1=nOð1Þ, where D is themaximumdifference in the
bidding price. In addition, both BidGuard and Bid
Guard-M are proved to be asymptotically optimal.

� We evaluate the performance of BidGuard and
BidGuard-M through simulations based on a real
data set. Extensive numerical results demonstrate
that both frameworks achieve bid-privacy preserva-
tion although sacrificing social cost.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the related work. In Section 3,
we introduce two system models and the objectives. In
Sections 4 and 5, we present frameworks for the two models
in detail and prove their properties, respectively. We evalu-
ate the performance of our frameworks in Section 6. We
conclude this paper in Section 7.

2 RELATED WORK

In recent years, incentive mechanisms in mobile crowdsens-
ing have been widely studied [16], [38]. As one of the pio-
neering works on designing incentive mechanisms for
mobile crowdsensing, Yang et al. [48], [49] proposed two
incentive mechanisms for both user-centric and platform-
centric models using auction and Stackelberg game, respec-
tively. The objectives of most of the state-of-art incentive
mechanisms are either maximizing the total utility/value of
the platform under a certain constraint (e.g., budget) [52] or
minimizing the total payment of the platform [32].
Feng et al. [15] proposed a mechanism called TRAC, which
takes into consideration the importance of location informa-
tion when assigning sensing tasks.

Many pieces of works have explored the privacy-pre-
serving mechanisms in mobile crowdsourcing. Most of
them [17], [26] apply the spacial and temporal cloaking tech-
niques like K-anonymity to blur users’ locations in a cloaked
area or cloaked time interval to preserve users’ privacy.
PEPSI [11] and AnonySense [39] focus on anonymous data
collection, which could protect users’ identities when they
submit the tasks.

Some efforts have been specially made to protect users’
privacy in mobile crowdsensing [8]. Although providing
good performance in privacy preservation, the mechanisms
in [14], [18], [27], [28], [29], [35], [43], [50] are based on cryp-
tography techniques and do not take into consideration the
users’ strategic behaviors. Besides, all of the cryptography-
based works are vulnerable to inference attack, since an
attacker can infer users’ private information through the
published results. Sun et al. [41] proposed an auction-based
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incentive mechanism which encrypts users’ bids by oblivi-
ous transfer. But it does not solve the issue of inference
attack because one user still can infer others’ bids from the
received payment. Jin et al. proposed a privacy-preserving
approximately truthful incentive mechanism [23], which
minimizes the total payment, and a privacy-preserving
framework [24] for data aggregation. However, none of the
above works has a performance guarantee on social cost. In
this paper, our objectives are preserve users’ bid privacy
from inference attack while achieving approximate social
cost minimization.

Differential privacy was first introduced by Dwork et al.
[12]. The first differentially private auction mechanism was
proposed by McSherry et al. [33]. They also incorporate
exponential mechanism and mechanism design to achieve
differential privacy with different objectives. General meth-
ods to design truthful mechanisms while still preserving
differential privacy have been studied in [7], [21], [45]. How-
ever, our objective is different from above works. Recently,
differential privacy has been used in other applications,
e.g., location-based systems [4] and spatial crowdsouc-
ing [42]. Zhu et al. [54] proposed the first differentially pri-
vate spectrum auction mechanism, which achieves strategy-
proofness and approximate revenue maximization. Note
that our objective is to minimize the social cost, which dif-
fers from that in [54].

3 MODELS AND PROBLEM FORMULATION

In this section, we model the mobile crowdsensing system
as a reverse auction and present two different models. Simi-
lar to most mobile crowdsensing systems [15], [47], [48],
[49], [51], we consider a mobile crowdsensing system con-
sisting of a platform and multiple smartphone users who
are interested in performing sensing tasks. In the first
model, each user can submit only one task-bid pair. Our sec-
ond model allows each user to submit multiple task-bid
pairs and can be assigned to work on multiple tasks. Then
we describe the threat models, which threaten both of the
models. At the end of this section, we present some impor-
tant properties and give our design objective.

3.1 Single-Bid Model

The platform first publicizes a set T ¼ ft1; t2; . . . ; tmg of m
sensing tasks. Assume there is a set U ¼ f1; 2; . . . ; ng of n52
smartphone users. Each user i has a task set Gi � T , which
it can perform. Each Gi is associated with a cost ci, which is
a private information of user i. The platform selects a subset
of users S � U to complete all the sensing tasks in T . At last,
the platform calculates the payment pi for each selected
user i 2 S. Let p!¼ ðp1; p2; . . . ; pnÞ denote the payment pro-
file. The utility of any user i 2 U is

ui ¼
pi � ci; if i 2 S;
0; otherwise:

�
In this paper, we model the interactive process between

the platform and the users as a sealed-bid reverse auction,
where the platform buys sensing service and the users are
bidders who sell sensing service. In order to prevent the
monopoly and guarantee the quality of sensing task, we
assume each task in T can be completed by more than one

user in U. This assumption is reasonable for mobile crowd-
sensing as made in [15]. If a task in T can only be completed
by at most one user in U, we simply remove it from T .

At the beginning of this auction, each user i 2 U submits
a task-bid pair bi ¼ ðGi; biÞ to the platform, where bi is user
i’s bid, representing the minimum price user i wants to sell
its sensing service for. Note that in a truthful auction-based
incentive mechanism, users are stimulated to bid their true
costs, i.e., bi ¼ ci. Without loss of generality, we assume that
each user’s bid is bounded by ½bmin; bmax�, where bmin is nor-
malized to 1 and bmax is a constant. Let D denote the differ-
ence between bmax and bmin. Let b

!¼ ðb1;b2; . . . ;bnÞ denote
the task-bid profile. Given the task-bid profile b

!
, the plat-

form determines the outcome of the auction, which consists
of selected winning users S and the payment profile p!.

3.2 Multi-Bid Model

In the single-bid model, each user submit a bid for a set of
tasks. In the multi-bid model, each user is allowed to submit
a bid for each task in its task set, and each user can be
assigned to work on multiple tasks.

The definitions of T , U , S, Gi, p
! and D are the same as in

Section 3.1. In the multi-bid model, for each user i 2 U, each
task tki in Gi has an associated cost cki . Each user i submits a
set Bi ¼ fb1

i ;b
2
i ; . . . ;b

ki
i g of ki ¼ jGij task-bid pairs. Each task-

bid pair is denoted by bk
i ¼ ðtki ; bki Þ, where tki is a single task

from Gi, and bki is the minimum price user i wants to sell its
sensing service for tki . Note that in a truthful auction-based
incentive mechanism, users are stimulated to bid their true
costs, i.e., bki ¼ cki . Let B

!¼ ðB1;B2; . . . ;BnÞ denote the task-
bid profile. Given the task-bid profile B!, the platform
determines the winning task-bid pair set BW �

S
i2UBi such

that
S

bk
i
2BW tki ¼ T . For eachwinning task-bid pair bki 2 BW ,

the platform calculates a payment pki . A user i is called a win-

ner and be added into S if it has at least one winning task-bid
pair, i.e., Bi \ BW 6¼ ;. The payment for each winner i is
pi ¼

P
bk
i
2Bi\BW pki . The utility of any user i 2 U is

ui ¼
pi �

P
bk
i
2Bi\BW cki ; if i 2 S;

0; otherwise:

(

3.3 Threat Models

Threats to Incentive. We assume that users are selfish but
rational. Hence user i could report a bid bi differs from its
true cost ci, i.e., bi 6¼ ci in the single-bid model or report a
bid bki 6¼ cki in the multi-bid model to maximize its own util-
ity. We also assume that user i does not misreport its task
set Gi in the single-bid model as in [15], [47], [48], [49], [51],
and does not misreport any tki 2 Gi in the multi-bid model.1

Other threats to incentive (e.g., collusion among bidders)
are out of the scope of this paper.

Threats to Privacy. As mentioned earlier, bidders are stim-
ulated to bid their true costs in a truthful auction-based
incentive mechanism, i.e., bi ¼ ci in the single-bid model

1. In the single-bid model, if user i reports G0i containing tasks not in
Gi, i.e., G

0
i n Gi 6¼ ;, it cannot finish G0i when selected. If user i reports

G0i � Gi with ci, the probability of user i being selected will not increase
according to our mechanism. The case where user i misreports both Gi

and ci is challenging, because calculating the true cost of G0i � Gi is
still an open question. In the multi-bid model, if user i reports bki con-
taining tasks not in Gi, i.e., t

0k
i =2 Gi, it cannot finish t0ki when selected.
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and bki ¼ cki in the multi-bid model. However, one bidder
could infer other bidders’ bid according to the outcome of
the mechanism. This inference attack can be seen from the
following examples.

We first consider the single-bid model, suppose there are
5 users in the system and their task-bid pairs bi ¼ ðGi; biÞ;
i 2 ½1; 5� are shown in Table 1. The platform publicizes a set
of 3 sensing tasks T ¼ ft1; t2; t3g. According to the proposed
truthful mechanism in TRAC [15], the winning users
S ¼ f2; 1; 3g. Suppose user 5 is a bidder who want to infer
other bidders’ bid, and it changes its bid b5 from $5 to $3 in
the next auction while the other four bidders do not change
their task-bid pairs. The winning users of the new auction is
S ¼ f2; 1; 5g. Since the platform publishes the outcome of
the mechanism for transparency, user 5 could know the
results and infer that user 3’s bid is between $3 and $5 by
the fact that if it bids $5 it will be replaced by user 3 and if it
bid $3 it will replace user 3. We can see that, after many
rounds of auction, user 5 might narrow down user 3’s bid
range, and even infer the exact value in some cases.

Next we consider the inference attack in multi-bid model
using the example shown in Table 2. According to the pro-
posed truthful mechanism in TRAC [15], the winning bid-
pairs are BW ¼ fb1

2;b
2
1;b

2
3g, and thus S ¼ f2; 1; 3g. Suppose

user 5 is a bidder who want to infer other bidders’ bid, and
it changes its bid b25 from $2.5 to $2 in the next auction while
the other four bidders do not change their task-bid pairs.
Then the winning bid-pairs of the new auction are
BW ¼ fb1

2;b
2
1;b

2
5g. Based on this outcome, user 5 could infer

that user 3’s bid for t3 is between $2 and $2.5 by the fact that
if it bids $2.5 it will be replaced by user 3 and if it bids $2 it
will replace user 3. After many rounds of auction, user 5
might also narrow down user 3’s bid range, and even infer
the exact value in some cases.

This inference attack is practical inmostmobile crowdsens-
ing applications, e.g., [34], [53], where tasks are publicized
periodically for collecting dynamic sensing data. Protecting
users’ bid privacy from such inference attack is important
because its disclosure might also incur threats to users’ other
private information, such as location [25], [44]. For example,
in [25] each user i’s cost of task ci is modeled as a linear func-
tion of its distance di to the task. In a truthful mechanism, user
i’s bid bi ¼ ci. Therefore, an attacker can infer user i’s location
inside a suspicion region, which is the circle centered at the
task with radius di, by inferring its bid bi. Besides, an attacker
can also improve the inference accuracy by narrowing down
the victim’s bid throughmany rounds of auction.

3.4 Desired Properties

We consider the following important properties.

� Computational Efficiency: A mechanism is computa-
tionally efficient if it terminates in polynomial time.

� Individual Rationality: A mechanism is individually
rational if each user will have a non-negative utility
when bidding its true cost.

� Truthfulness: A mechanism is truthful if any user’s
utility is maximized when bidding its true cost.

� Social Cost Minimization: A mechanism achieves
social cost minimization if the total cost of the users
in S is minimized subject to certain constraints on S.

In addition, we consider users’ bid privacy preservation.

Definition 1 (Differential Privacy [12]). A randomized
function M has �-differential privacy if for any two input sets
A and B with a single input difference, and for any set of out-
comes O � RangeðMÞ

Pr½MðAÞ 2 O� � expð�Þ � Pr½MðBÞ 2 O�:

In this paper, the randomized function M is correspond-
ing to our frameworks, and RangeðMÞ is the outcome space
of the frameworks. One relaxation of differential privacy is
as follows.

Definition 2 (Approximate Differential Privacy [13]). A
randomized function M gives ð�; dÞ-differential privacy if for
any two input sets A and B with a single data difference, and
for any set of outcomes O � RangeðMÞ

Pr½MðAÞ 2 O� � expð�Þ � Pr½MðBÞ 2 O� þ d:

The truthfulness of an auction mechanism is guaranteed
by the following theorem.

Theorem 1 ([5]). Let PriðzÞ denote the probability that bidder i is
selected when its bid is z. A mechanism with bids b

!
and pay-

ments p! is truthful in expectation if and only if, for any bidder i,

1) PriðzÞ is monotonically non-increasing in bi;
2)

R1
0 PriðzÞdz < 1;

3) The expected payment satisfies E pi½ � ¼ biPriðbiÞ þR1
bi

PriðzÞdz.

Next, we introduce the concept of the exponential mech-
anism and its properties. In the literature of differential pri-
vacy, the exponential mechanism is often used to design
privacy-preserving mechanisms. A key component of the
exponential mechanism is the score function fðA; oÞ, which
maps the input set A and an outcome o 2 O to a real-valued
score. The score represents how good the outcome o is for
the input set A compared with the optimal outcome.

Exponential Mechanism ��fðAÞ. Given an outcome space O,
an input set A, a score function f and a small constant �, the
exponential mechanism ��fðAÞ chooses an outcome o 2 O
with probability

Pr ��fðAÞ ¼ o
h i

/ exp �fðA; oÞð Þ:

TABLE 1
Example Showing the Inference Attack in Single-Bid Model

User
bi

1 2 3 4 5

Gi t1; t2 t1 t1; t3 t1; t2 t1; t3
bi $3 $1 $4 $5 $5

TABLE 2
Example Showing the Inference Attack in Multi-Bid Model

User
bki

1 2 3 4 5

tki t1 t2 t1 t1 t3 t1 t2 t1 t3
bki $1.5 $1.5 $1 $1.6 $2.4 $3 $2 $2.5 $2.5

1854 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 8, AUGUST 2018



Let L denote an upper-bound of the difference of any two
input sets, the exponential mechanism has the following
properties.

Theorem 2 ([33]). The exponential mechanism gives 2�L-differ-
ential privacy.

Theorem 3 ([19]). For any a 	 0, the exponential mechanism,
when used to select an output o 2 O, ��fðAÞ yields 2�L-differen-
tial privacy, letting O
 be the subset of O achieving
fðA; oÞ ¼ maxofðA; oÞ, ensures that

Pr fðA; ��fðAÞÞ < max
o

fðA; oÞ � lnðjOj=jO
jÞ=�� a=�

� �
� expð�aÞ:

3.5 Design Objective

The goal of our framework design is to minimize the social
cost while achieving computational efficiency, individual
rationality, truthfulness and differential privacy. Specifi-
cally, the minimization problem in the single-bid model is
referred to as the Social Cost Minimization (SCM) problem
and the minimization problem in the multi-bid model is
referred to as the SCM-M problem. Next, we give the formal
formulation of the SCM problem and the SCM-M problem,
respectively.

SCM Problem.Given a task set T and a user set U , the goal
of the SCM-S problem is to find a subset of users S � U, such
thatCðSÞ ¼

P
i2S ci is minimized subject to

S
i2SGi ¼ T .

SCM-M Problem. Given a task set T and a user set U, the
goal of the SCM-M problem is to find a subset of users
S � U and their assigned task-bid pairs BW , such that
CðBW Þ ¼

P
bk
i
2BW cki is minimized subject to

S
bk
i
2BW tki ¼ T .

Note that SCM problem is challenging because it is NP-
hard (proved by Theorem 4 in [30]), let alone combining
with computational efficiency, individual rationality, truth-
fulness and differential privacy. Although SCM-M can be
solved optimally, it is still challenging when combining
with the other properties. Therefore, we aim to design dif-
ferentially private truthful frameworks with theoretically
guaranteed approximate social cost.

4 BIDGUARD: DIFFERENTIALLY PRIVATE AUCTION

FRAMEWORK FOR THE SINGLE-BID MODEL

In this section, we design and analyze BidGuard, a differen-
tially private auction framework for the Single-bid Model.

4.1 Design Rationale

BidGuard integrates the exponential mechanism with the
reverse auction to achieve computational efficiency, indi-
vidual rationality, truthfulness, differential privacy and
approximate social cost minimization. In this framework,
users are selected iteratively. In each iteration, redundant
users are eliminated and each remaining user is assigned a
probability to be selected. The framework then selects one
of them as the winner based on the probability distribution.
Specifically, the probability of a user to be selected is set
according to a specific criterion. The above processes
repeats until all the sensing tasks can be completed by the
selected users. Finally, the framework computes the pay-
ment to each winner.

4.2 Design of BidGuard

In this section, we will describe BidGuard in detail. As illus-
trated in Algorithm 1, BidGuard consists of three phases:
user screening, winner selection, and payment determina-
tion. It executes these three phases iteratively until all the
sensing tasks can be completed by the selected users.

Algorithm 1. BidGuard

Input: A set of sensing tasks T , a set of users U, submitted
task-bid profile b

!
, and differential privacy parame-

ters � > 0 and d 2 ð0; 12�.
Output: A set of winners S and a payment profile p!.

1 S  ;, T c  ;,R  U;
2 foreach i 2 U do pi  0
3 while T c 6¼ T do
4 foreach i 2 R do
5 if Gi � T c thenR R n fig
6 end
7 foreach i 2 R do
8 Calculate the probability PriðbiÞ of each user being

selected according to the score function;
9 end

10 Select one user randomly, denoted by i0, according to the
computed probability distribution;

11 S  S [ fi0g, T c  T c [ Gi0 ,R R n fi0g;
12 end
13 foreach i 2 S do pi  bi þ

R bmax

bi
PriðzÞdz

PriðbiÞ
14 return S and p!.

1) User Screening Phase. BidGuard will eliminate all the
redundant users, whose task set can be completed by the
currently selected users. The set of remaining users is
denoted byR.

2) Winner Selection Phase. BidGuard will assign each user
i 2 R a probability of being selected as follows. It first com-
putes a criterion rðbiÞ, which is the bid divided by the num-
ber of tasks that cannot be completed by the currently
selected users, i.e.,

rðbiÞ ¼
bi

jGi � T cj
; (1)

where T c is the set of tasks that can be completed by the cur-
rently selected users. BidGuard selects the user with the
lowest rðbiÞ in each iteration. To apply the exponential
mechanism, we need to design a score function, which is a
non-increasing function of rðbiÞ. The probability of each
user to be selected is set according to the value of the score
function.

3) Payment Determination Phase. Let PriðzÞ denote the
probability of user i being selected with bid z. According to
Theorem 1, the payment to winner i is

pi ¼ bi þ
R bmax

bi
PriðzÞdz

PriðbiÞ
:

4.3 Design of Score Functions

To apply the exponential mechanism, we need to design a
score function. Specifically, we design two score functions,
linear score function and log score function. We will show that
they have different theoretical bounds on the social cost
(Section 4.4) and performance in simulations (Section 6).
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Linear Score Function. fLINðxÞ ¼ 1� x. For any bidder
i 2 R, the probability to be selected in each iteration is

PriðbiÞ /
exp �0ð1� bi

bmaxjGi�T cjÞ
� �

; if i 2 R;
0; otherwise;

(

where �0 ¼ �=ðeD lnðe=dÞÞ. Note that in order to guarantee
the value of the score function is nonnegative, we normalize
rðbiÞ, i.e., bi

bmaxjGi�T cj. Then the probability is

PriðbiÞ ¼
exp �0ð1� bi

bmaxjGi�T c jÞ
� �

P
j2R exp �0ð1� bj

bmax jGj�T c jÞ
� � ; if i 2 R;

0; otherwise:

8>><
>>: (2)

Log Score Function. fLOGðxÞ ¼ log 1=2x. For any bidder
i 2 R, the probability to be selected in each iteration is

PriðbiÞ /
exp �0 log 1=2

bi
bmaxjGi�T cj

� �
; if i 2 R;

0; otherwise;

(

where �0 ¼ �=ðe lnðe=dÞlog 1=2 1=ð1þ DÞð ÞÞ. We also normalize
the rðbiÞ, i.e., bi

bmaxjGi�T cj to guarantee the value of the score
function is nonnegative. Then the probability is

PriðbiÞ ¼
exp �0 log 1=2

bi
bmax jGi�T c j

� �
P

j2R exp �0 log 1=2
bj

bmax jGj�T c j

� � ; if i 2 R;

0; otherwise:

8>><
>>: (3)

Throughout the rest of this paper, we denote the BidG-
uard with linear score function fLIN and log score function
fLOG by LIN and LOG, respectively.

Illustrating Example. We use the example in Table 1 to
illustrate how LIN works. Assuming bmin ¼ 1, bmax ¼ 6, then
D ¼ 5. Let the differential privacy parameters � ¼ 0:1 and
d ¼ 0:5, then �0 ¼ 0:1=ðe� 5 lnðe=0:5ÞÞ. At the beginning,
T ¼ ft1; t2; t3g, S ¼ ;, T c ¼ ;, R ¼ U ¼ f1; 2; 3; 4; 5g. LIN
starts to select users iteratively. In the first iteration, LIN cal-
culates jGi � T cj for each user i 2 R. We have jG1 � T cj ¼ 2,
jG2 � T cj ¼ 1, jG3 � T cj ¼ 2, jG4 � T cj ¼ 2, and jG5� T cj ¼ 2.
Based on (2), LIN calculates the probability of every user in
R to be selected in this iteration, e.g., Pr1ð3Þ ¼ expð0:7�0Þ=
ðexpð0:7�0Þ þ expð0:8�0Þ þ expð0:6�0Þ þ expð0:5�0Þ þ expð0:5�0ÞÞ.
LIN selects a user based on the calculated probability distri-
bution. Assume LIN selects user 1, then S ¼ f1g, T c ¼
ft1; t2g, R ¼ f3; 5g. At the beginning of the second iteration,
LIN calculates jGi � T cj for the remaining users user 3 and
user 5. We have jG3 � T cj ¼ 1 and jG5 � T cj ¼ 1. Then LIN
calculates the probabilities of user 3 and user 5 to be
selected in this iteration according to (2). We have Pr3ð4Þ ¼
expð0:2�0Þ=ðexpð0:2�0Þ þ expð�0ÞÞ and Pr5ð5Þ ¼ expð�0Þ=ðexp
ð0:2�0Þ þ expð�0ÞÞ. Assume user 3 is selected in this iteration,
then LIN terminates since T c ¼ T . At last, LIN calculates the
payment to all the selected users, i.e., user 1 and user 3. We

have p1 ¼ 3þ
R 6

3
Pr1ðzÞdz
Pr1ð3Þ and p3 ¼ 4þ

R 6

4
Pr3ðzÞdz
Pr3ð4Þ .

4.4 Analysis of BidGuard

In this section, we first analyze the properties of LIN.

Theorem 4. LIN achieves computational efficiency, individual
rationality, truthfulness, and ð�ðe� 1Þ=e; dÞ-differential privacy,

where � > 0 and d 2 ð0; 12� are constants, e is the base of the natu-
ral logarithm. In addition, it has social cost at most
gOPT þOðlnnÞ with probability at least 1� 1=nOð1Þ, where g
is the cardinality of the largest user task set, OPT is the optimal
social cost of the SCM problem, and n is the number of users.

Proof.Wefirst prove the computational efficiency. The outer
while-loop (Lines 3-12) will run at most m iterations since
there are m tasks. Meanwhile, the two inner for-loops
(Lines 4-6) and (Lines 7-9) will run at most n iterations
since there are n users. Therefore, the total computational
complexity of LIN is OðmnÞ. The individual rationality is
guaranteed by the fact that the payment to each winner i is

pi ¼ bi þ
R bmax

bi
PriðzÞdz

PriðbiÞ 	 bi. In order to prove the rest of this

theorem,we prove the following lemmas. tu

Lemma 1. LIN is truthful.

Proof. According to (2) and (3), the probability PriðbiÞ of
user i being selected in BidGuard is monotonically non-
increasing in its bid bi. In addition, no bid is greater than
bmax in our model. Thus we have

R1
0 PriðzÞdz ¼

R bmax

0
PriðzÞdz < 1: Furthermore, we have

E½pi�

¼ 1� PriðbiÞð Þ � 0þ PriðbiÞ � bi þ
R bmax

bi
PriðzÞdz

PriðbiÞ

 !

¼ biPriðbiÞ þ
Z 1
bi

PriðzÞdz:

Then, according to Theorem 1, the lemma holds. tu

Lemma 2. For any constants � > 0 and d 2 ð0; 12�, LIN achieves
ð�ðe� 1Þ=e; dÞ-differential privacy, where e is the base of the
natural logarithm.

Proof. Let b
!

and b0
!

be two input task-bid profiles that differ

in any user d’s bid, respectively. Let Mð b!Þ and Mðb0
!
Þ

denote the sequences of users selected by LIN with inputs

b
!

and b0
!
, respectively. We show that LIN, even revealing

the order in which the users are chosen, achieves differen-

tial privacy for an arbitrary sequence of users I ¼ i1;

i2; . . . ; il of arbitrary length l. We consider the relative prob-

ability of LIN for given task-bid inputs b
!

and b0
!

Pr Mð b!Þ ¼ I
h i

Pr Mðb0
!
Þ ¼ I

h i ¼Yl
j¼1

exp �0ð1�
bij

bmax jGij�T cjÞ

� �
P

i2Uj
exp �0ð1� bi

bmax jGi�T c jÞ
� �

exp �0ð1�
b0
ij

bmax jGij�T cjÞ

� �
P

i2Uj
exp �0ð1�

b0
i

bmax jGi�T c jÞ
� �

¼
Yl
j¼1

exp �0ð1� bij
bmaxjGij�T cjÞ

� �

exp �0ð1�
b0
ij

bmaxjGij�T cjÞ
� �

�
Yl
j¼1

P
i2Uj exp �0ð1� b0i

bmaxjGi�T cjÞ
� �

P
i2Uj exp �0ð1� bi

bmaxjGi�T cjÞ
� � ;
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where Uj ¼ U n fi1; i2; . . . ; ij�1g and the first equation is

based on (2). We then prove this lemma by cases. When

bd < b0d; the second product is at most 1 because the fac-

tor for any j 2 ½1; l� is less than 1 if d 2 Uj and equal to 1

otherwise. Therefore, we have

Pr Mð b!Þ ¼ i1; i2; . . . ; il

h i
Pr Mðb0

!
Þ ¼ i1; i2; . . . ; il

h i � exp �0ð1� bd
bmaxjGd�T cjÞ

� �
exp �0ð1� b0

d
bmaxjGd�T cjÞ

� �
¼ exp �0

b0d � bd
bmaxjGd � T cj

� �
4 exp �0ðb0d � bdÞ

	 

4 expð�0DÞ:

When bd 	 b0d; the first product is at most 1 because the
factor for any j 2 ½1; l� is less than 1 if ij ¼ d and equal to 1
otherwise. In the remainder of the proof, we focus on this
case. Therefore, we have

Pr Mð b!Þ ¼ i1; i2; . . . ; il

h i
Pr Mðb0

!
Þ ¼ i1; i2; . . . ; il

h i

4
Yl
j¼1

P
i2Uj exp �0ð1� b0

i
bmaxjGi�T cjÞ

� �
P

i2Uj exp �0ð1� bi
bmaxjGi�T cjÞ

� �

¼
Yl
j¼1

P
i2Uj exp �0 ui

jGi�T cj

� �
exp �0ð1� bi

bmaxjGi�T cjÞ
� �

P
i2Uj exp �0ð1� bi

bmaxjGi�T cjÞ
� �

¼
Yl
j¼1

Ei2Uj exp �0
ui

jGi � T cj

� �� �

4
Yl
j¼1

Ei2Uj expð�0uiÞ½ �;

where ui ¼ b0i � bi. For all x 4 1, ex 4 1þ ðe� 1Þ � x.
Therefore, for all �0 4 1, we have

Yl
j¼1

Ei2Uj ½expð�0uiÞ�4
Yl
j¼1

Ei2Uj ½1þ ðe� 1Þ�0ui�

4 exp ðe� 1Þ�0
Xl
j¼1

Ei2Uj ½ui�
 !

:

Lemma B.2 in [19] implies that Pr½
Pl

j¼1 Ei2Uj ½ui� >
D lnðe=dÞ� 4 d. Let O denote the outcome space, where
each o 2 O is a sequence of users i1; i2; . . . ; il. We split O
into two sets O0 and O00, where O0 ¼ fo 2 Oj

Pl
j¼1

Ei2Uj ½ui� � D lnðe=dÞg and O00 ¼ O n O0. Thus we have

Pr Mð b!Þ 2 O
h i
¼
X
o2O

Pr Mð b!Þ ¼ o
h i

¼
X
o2O0

Pr Mð b!Þ ¼ o
h i

þ
X
o2O00

Pr Mð b!Þ ¼ o
h i

�
X
o2O0

exp ðe� 1Þ�0D lnðe=dÞð ÞPr Mðb0
!
Þ ¼ o

h i
þ d

� expððe� 1Þ�0D lnðe=dÞPr Mðb0
!
Þ 2 O

h i
þ d

¼ expð�ðe� 1Þ=eÞPr Mðb0
!
Þ 2 O

h i
þ d:

The lemma holds. tu

Lemma 3. With probability at least 1� 1=nOð1Þ, LIN has social
cost at most gOPT þOðlnnÞ, where g is the cardinality of the
largest user task set, OPT is the optimal social cost of the SCM
problem, and n is the number of users.

Proof. Let S
 denote the optimal solution to the SCM prob-
lem. For LIN, we consider a sequenceW of winners accord-
ing to the order they are selected, i.e.,W ¼ w1; w2; . . . ; wl.

For each wi; 1 � i � l, let Wi denote the set of users
satisfying 8j 2 Wi:

1) j 2 S
;
2) Gj \ Gwi

6¼ ;;
3) Gj \ Gwk

¼ ;; 8k 2 ½1; i� 1�;
Wi is the set of users in S
 but not inW because of wi. For
truthful mechanisms, we have bi ¼ ci. According to The-
orem 3, by taking a ¼ OðlnnÞ, we have

1� cwi

jGwi
� T cj

	 1� cj
jGj � T cj

�OðlnnÞ;

with a probability of at least 1� 1=nOð1Þ. This implies that

cj 	
cwi

jGwi
� T cj

� jGj � T cj �OðlnnÞ;

with a probability of at least 1� 1=nOð1Þ.
Summing over all j 2 Wi, we have

X
j2Wi

cj 	
cwi

jGwi
� T cj

�OðlnnÞ
� �

�
X
j2Wi

jGj � T cj

	 cwi

jGwi
� T cj

�OðlnnÞ;

with a probability of at least 1� 1=nOð1Þ. The first
inequality holds because

P
j2Wi
jGj � T cj 	 jWij. The sec-

ond inequality holds because
P

j2Wi
jGj � T cj 	 1. Note

that jGwi
� T cj can be upper bounded by a constant g,

which is the cardinality of the largest user task set. There-
fore, we have X

j2Wi

cj 	
cwi

g
�OðlnnÞ:

Summing over all wi 2 W, we have

OPT ¼
X
j2S


cj ¼
X
wi2W

X
j2Wi

cj þ
X

j2S
\W
cj

	
X
wi2W

cwi

g
�OðlnnÞ;

where the inequality holds because when n is large,
jWj � n.

Then the lemma holds. tu

For LOG we have the following properties. The proofs
are similar to those for LIN, and thus omitted.

Theorem 5. LOG achieves computational efficiency, individual
rationality, truthfulness, and ð�ðe� 1Þ=e; dÞ-differential pri-
vacy, where � > 0 and d 2 ð0; 12� are two constants, e is the base
of the natural logarithm. In addition, it has social cost at most
2tHmOPT with probability at least 1� e�t, for any constant
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t > 0 and Hm ¼
Pm

j¼1 1=j, where m is the number of sensing
tasks, andOPT is the optimal social cost of the SCM problem.

Remarks: According to Theorem 4 in [30], the minimum
weighted set cover problem can be reduced to the SCMprob-
lem. It is well known that the best-possible polynomial time
approximation algorithm is anHm-approximation algorithm
for the weighted set cover problem [9], where Hm is the mth
harmonic number. LOG has social cost at most 2tHmOPT ,
where t is a constant, and thus it is asymptotically optimal.
Even though LIN cannot be proved to be asymptotically opti-
mal in terms of the social cost, we will show in Section 6 that
it achieves better privacy protection than LOG.

5 BIDGUARD-M: DIFFERENTIALLY PRIVATE

AUCTION FRAMEWORK FOR THE MULTI-BID

MODEL

In this section, we design and analyze BidGuard-M, a differ-
entially private auction framework for the multi-bid Model.

5.1 Design Rationale

BidGuard-M integrates the exponential mechanism with the
reverse auction to achieve computational efficiency, individ-
ual rationality, truthfulness, differential privacy and approx-
imate social cost minimization. In this framework, task-bid
pairs are selected iteratively. In each iteration, one task is con-
sidered. Each of the task-bid pairs with this task is assigned a
probability to be selected. The framework then selects one of
them as the winning task-bid pair according to the probabil-
ity distribution. Specifically, the probability of a task-bid pair
to be selected is set according to a specific criterion. The
above process repeats until all the sensing tasks can be com-
pleted by the selected task-bid pairs. Finally, the framework
computes the payment to eachwinning task-bid pair.

5.2 Design of BidGuard-M

In this section, we will describe BidGuard-M in detail as
illustrated in Algorithm 2.

BidGuard-M selects a winning task-bid pair for each task
in T iteratively until all the tasks can be completed. All the
winning task-bid pairs constitute BW . At the beginning of
each iteration, BidGuard-M first selects for an unassigned
task t 2 T a set of task-bid pairs Bt in which tki ¼ t for all
bk
i 2 Bt. BidGuard-M will assign each task-bid pair bk

i 2 Bt a
probability to be selected as follows. It is desired to select
the task-bid pair with the lowest bki from Bt. To apply the
exponential mechanism, we need to design a score function,
which is a non-increasing function of bki . The probability of
each task-bid pair to be selected is set according to the value
of the score function. At last, BidGuard-M calculates the
payment pki for each winning task-bid pair bk

i 2 BW . Let
PriðzÞ denote the probability of a task-bid pair being
selected with bid z. According to Theorem 1, the payment
to a winning task-bid pair is

pki ¼ bki þ

R bmax

bk
i

PriðzÞdz

Priðbki Þ
:

For each user, if it has at least one winning task-bid pair, it is
added into the winner set S and its payment pi ¼P

bk
i
2Bi\BW pki .

Algorithm 2. BidGuard-M

Input: A set of sensing tasks T , a set of users U, submitted
task-bid profile B!, and differential privacy parame-
ter � > 0.

Output: A set of winners S and a payment profile p!.
1 BW  ;, S  ;, Bt  ;;
2 foreach i 2 U do pi  0
3 foreach t 2 T do
4 foreach i 2 U do
5 if 9bki 2 Bi such that tki ¼ t then

Bt  Bt [ fbk
i g

6 end
7 foreach bk

i 2 Bt do
8 Calculate the probability Priðbki Þ of each task-bid pair

being selected according to the score function;
9 end
10 Select one task-bid pair randomly, denoted by bk

0
i0 , accord-

ing to the computed probability distribution;
11 BW  BW [ fbk0

i0 g, Bt  ;;
12 end
13 foreach bk

i 2 BW do

14 pki  bki þ
R bmax

bk
i

PriðzÞdz

Priðbki Þ
;

15 end
16 foreach i 2 U do
17 if Bi \ BW 6¼ ; then
18 S  S [ fig;
19 pi  

P
bk
i
2Bi\BW pki ;

20 end
21 end
22 return S and p!.

5.3 Design of Score Functions

Same as the single-bid model, we adopt fLIN and fLOG as
score functions. We will show that they have different theo-
retical bounds on the social cost (Section 5.4) and perfor-
mance in simulations (Section 6).

Linear Score Function. For any task-bid pair bk
i 2 Bt, the

probability to be selected is

Priðbki Þ / exp � 1� bki
bmax

� �� �
:

Note that in order to guarantee the value of the score func-

tion is nonnegative, we normalize bki , i.e.,
bk
i

bmax
. Then the

probability is

Priðbki Þ ¼
exp � 1� bk

i
bmax

� �� �
P

bk
j
2Bt exp � 1�

bk
j

bmax

� �� � : (4)

Log Score Function. For any task-bid pair bki 2 Bt, the
probability to be selected is

Priðbki Þ / exp � log 1=2

bki
bmax

� �
:

We also normalize the bki , i.e.,
bk
i

bmax
to guarantee the value of

the score function is nonnegative. Then the probability is
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Priðbki Þ ¼
exp � log 1=2

bk
i

bmax

� �
P

bk
j
2Bt exp � log 1=2

bk
j

bmax

� � : (5)

Throughout the rest of this paper, we denote the BidG-
uard-M with linear score function fLIN and log score func-
tion fLOG by LIN�M and LOG�M, respectively.

Illustrating Example. We use the example in Table 2 to
illustrate how LIN�M works. Let bmin ¼ 1, bmax ¼ 4, and the
differential privacy parameter � ¼ 0:1. At the beginning,
T ¼ ft1; t2; t3g, S ¼ ;, BW ¼ ;, Bt ¼ ;, and U ¼ f1; 2; 3; 4; 5g.
LIN�M starts to select users for every task in T iteratively.
For t1, LIN�M first constructs B1 ¼ fb1

1;b
1
2;b

1
3;b

1
4;b

1
5g. By (4),

LIN�M calculates the probability of every task-bid pair in B1
to be selected. For example, the probability of b1

1 to be
selected is Pr1ð1:5Þ ¼ expð0:0625Þ=ðexpð0:0625Þ þ expð0:075Þþ
expð0:06Þ þ expð0:025Þ þ expð0:0375ÞÞ. LIN�M selects one
task-bid pair based on the calculated probability distribu-
tion. Assume b12 is selected, thenBW ¼ fb1

2g. LIN�M executes
the same process for t2. We have B2 ¼ fb2

1;b
2
4g. The probabil-

ities of b2
1 and b2

4 to be selected are Pr1ð1:5Þ ¼ exp
ð0:0625Þ=ðexpð0:0625Þ þ expð0:05ÞÞ and Pr4ð2Þ ¼ expð0:05Þ=
ðexpð0:0625Þ þ expð0:05ÞÞ, respectively. Assume LIN�M
selects b21, then BW ¼ fb1

2;b
2
1g. For t3, LIN�M constructs

B3 ¼ fb2
3;b

2
5g. The probabilities of b2

3 and b2
5 to be selected are

Pr3ð2:4Þ ¼ expð0:06Þ=ðexpð0:06Þ þ expð0:0375ÞÞ and Pr5ð2:5Þ ¼
expð0:0375Þ=ðexpð0:06Þ þ expð0:0375ÞÞ, respectively. Assume
LIN�M selects b23, then BW ¼ fb1

2;b
2
1;b

2
3g. Once all tasks are

assigned, LIN�M calculates the payment for each task-bid

pair in BW . We have p12 ¼ 1þ
R 4

1
Pr2ðzÞdz
Pr2ð1Þ , p21 ¼ 1:5þ

R 4

1:5
Pr1ðzÞdz

Pr1ð1:5Þ ,

and p23 ¼ 2:4þ
R 4

2:4
Pr3ðzÞdz

Pr3ð2:4Þ . At last, LIN�M calculates the win-

ners set S ¼ f1; 2; 3g and corresponding payments, i.e.,
p1 ¼ p21, p2 ¼ p12 and p3 ¼ p23.

5.4 Analysis of BidGuard-M

In this section, we first analyze the properties of LIN�M.

Theorem 6. LIN�M achieves computational efficiency, individ-
ual rationality, truthfulness, and 2m�-differential privacy,
where � > 0 is a constant andm is the number of sensing tasks.
In addition, it has social cost at most OPT þmOðlnnÞ with
probability at least 1� 1=nOð1Þ, whereOPT is the optimal social
cost of the SCM-M problem, and n is the number of users.

Proof. We first prove the computational efficiency. The outer
while-loop (Lines 4-13) will run at most m iterations since
there are m tasks. Meanwhile, the two inner for-loops
(Lines 4-6) and (Lines 7-9)will run atmost n iterations since
there are n users. The payment calculation for the winning
task-bid pairs (Lines 13-15) will run at most m iterations
since there arem tasks. The winner selection and payment
calculation (Lines 16-21) will run at most n iterations since
there are n users. Therefore, the total computational com-
plexity of LIN�M is OðmnÞ. The individual rationality is
guaranteed by the fact that the payment to each winning

task-bid pair is pki ¼ bki þ
R bmax

bk
i

PriðzÞdz

Priðbki Þ
	 bki . In order to prove

the rest of this theorem,we prove the following lemmas. tu

Lemma 4. LIN�M is truthful.

Proof. According to (4) and (5), the probability Priðbki Þ of
task-bid pair bk

i 2 Bt being selected in BidGuard-M is
monotonically non-increasing in its bid bki . In addition, no
bid is greater than bmax in our model. Thus we haveR1
0 PriðzÞdz ¼

R bmax

0 PriðzÞdz < 1: Furthermore, we have

E½pki �

¼ 1� Priðbki Þ
	 


� 0þ Priðbki Þ � bki þ

R bmax

bk
i

PriðzÞdz

Priðbki Þ

0
@

1
A

¼ bki Priðbki Þ þ
Z 1
bk
i

PriðzÞdz:

Then, according to Theorem 1, the lemma holds. tu

In order to quantify the differential privacy performance
of LIN�M, we use the following lemmas.

Lemma 5 (Composability [33]). The sequential application of
randomized computation Mi, each giving �i-differential pri-
vacy, yields ð

P
i �iÞ-differential privacy.

Lemma 6. For any constant � > 0, LIN�M achieves 2m�-
differential privacy, wherem is the number of sensing tasks.

Proof. Since LIN�M follows the exponential mechanism, it
selects a task-bid pair for each task based on (4). Accord-
ing to Theorem 2, for each task LIN�M is 2�-differential
privacy, since the largest difference in the score function
(L) is 1. LIN�M selects a task-bid pair for each task in T
iteratively until all tasks can be finished. This is a sequen-
tial application of the selection mechanism for one task.
Therefore, according to Lemma 5, LIN�M is 2m�-differen-
tial privacy, since there arem tasks. tu

Next, we bound the social cost of LIN�M.

Lemma 7. With probability at least 1� 1=nOð1Þ, LIN�M has
social cost at most OPT þmOðlnnÞ, where OPT is the opti-
mal social cost of the SCM-M problem, m is the number of
sensing tasks and n is the number of users.

Proof. Let B
 denote the optimal solution to the SCM-M
problem. We denote as BW an arbitrary set of winning
task-bid pairs returned by LIN�M. Because only one task-
bid pair is selected for each task and all tasks need to be
completed, we have jB
j ¼ jBW j. Therefore, for any task-
bid pair bkj 2 B
, there exists a task-bid pair bk

i 2 BW such
that tki ¼ tkj , and vice versa. According to Theorem 3, by
taking a ¼ OðlnnÞ, we have

bki � bkj þOðlnnÞ; (6)

with a probability of at least 1� 1=nOð1Þ for each task t 2 T .
Summing (6) over all tasks,

P
bk
i
2BW bki �

P
bk
j
2B
 b

k
j þmO

ðlnnÞ with a probability at least 1� 1=nOð1Þ. For truthful

mechanisms, we have bki ¼ cki and bkj ¼ ckj . Thus
P

bk
i
2BW bki

is the social cost of LIN�M, andOPT ¼
P

bk
j
2B
 b

k
j .

This concludes the proof. tu

For LOG�M we have the following properties. The
proofs are similar to those for LIN�M, and thus omitted.

Theorem 7. LOG�M achieves computational efficiency, indi-
vidual rationality, truthfulness, and 2m log 1

2
ð 1
1þDÞ�-differential
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privacy, where m is the number of sensing tasks, D is the maxi-
mum difference in the bidding price, and � > 0 is a constant.
In addition, it has social cost at most 2tOPT with probability
at least 1� e�t, for any constant t > 0 and OPT is the opti-
mal social cost of the SCM-M problem.

Remarks: LOG�M has social cost at most 2tOPT , where t
is a constant, and thus it is asymptotically optimal.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of BidGuard
and BidGuard-M and compare them respectively with
TRAC [15] and DP-hSRC [23]. TRAC is closest to our work
in terms of the design objective, but does not protect users’
bid privacy. DP-hSRC considers users’ bid privacy, but min-
imizes total payment instead of social cost.

6.1 Simulation Setup

All the evaluation results are based on a real data set of taxi
traces. The dataset consists of the traces of 320 taxi drivers,
who work in the center of Rome [6]. Each taxi driver has a
tablet that periodically (every 7s) retrieves the GPS locations
(latitude and longitude) and sends it with the correspond-
ing driver ID to a central server. The mobility pattern of taxi
traces can be used to depict the mobility of smartphone
users as in [25], [47].

We consider a mobile crowdsensing system where the
task is to measure the cellular signal strength at specific
locations. Each user can sense the cellular signal strength
within the area centered at the user’s location with a radius
of 30 m. Tasks are represented by GPS locations reported by
taxis. We assume that the driver of each taxi is a user. We
preprocess the tasks such that each task can be sensed by at
least two users according to our system model.

We use three metrics to evaluate the performance: social
cost, total payment and privacy leakage. The social cost, as
defined in Section 3, refers to the total cost of all selected
users. The total payment measures the payment paid by the
platform to all selected users. We first compare the social
cost and total payment of BidGuard and BidGuard-M with
TRAC. Then we compare the social cost of BidGuard with
the optimal social cost. We define privacy leakage to quantita-
tively measure the differential privacy performance of
BidGuard and BidGuard-M.

Privacy Leakage. Given a mechanism M, let b
!

and b0
!

be
two task-bid profiles, which only differ in one user’s bid. Let

Mð b!Þ and Mðb0
!
Þ denote the outcome of M with input b

!

and b0
!
, respectively. The privacy leakage, denoted by PL,

is defined as the Kullback-Leibler divergence of the
two outcome probability distributions based on b

!
and b0
!
,

PL ¼
X
o2O

Pr Mð b!Þ ¼ o
h i

ln
Pr Mð b!Þ ¼ o
h i

Pr Mðb0Þ ¼ o�
�����!h �

:

0
B@ (7)

Note that the smaller the PL value is, the harder it is to dis-
tinguish the two task-bid profiles, and thus the better the
privacy preserving performance is achieved.

In our evaluation, we randomly select locations as the
sensing tasks according to the settings. We assume the bids
of users are randomly distributed over ½1; 50� for BidGuard

and ½1; 10� for BidGuard-M. Because users in BidGuard bid
for a set of tasks, while users in BidGuard-M bid for a single
task. We generate users’ bids according to two different dis-
tributions, i.e., uniform distribution and normal distribu-
tion. To evaluate the impact of the number of sensing tasks
on the performance metrics, we set the number of users to
200 and vary the number of sensing tasks from 20 to 60 with
a step of 10. To evaluate the impact of the number of users
on the performance metrics, we set the number of sensing
tasks to 150 and vary the number of users from 100 to 300
with a step of 50. For the differential privacy parameters,
we set � ¼ 0:1 and d ¼ 0:25 as default. All the results are
averaged over 1,000 independent runs for each setting.
Note that since the performances under both uniform and
normal distributions follow the same pattern according to
our evaluation, in the following we only show the perfor-
mance under the uniform distribution.

6.2 Evaluation of Social Cost

We first compare the social cost of BidGuard and BidGuard-
M with that of TRAC and DP-hSRC. Note that TRAC is opti-
mal in the multi-bid model. The impact of the number of
sensing tasks on the social cost of BidGuard and that of BidG-
uard-M is shown in Figs. 1a and 1b, respectively.We observe
that the social cost of TRAC, DP-hSRC, BidGuard and BidG-
uard-M all increasewhen the number of sensing tasks grows.
This is because with more sensing tasks, the platform may
select more users incurring a higher social cost. We also see
that the social cost of TRAC is lower than those of DP-hSRC,
BidGuard and BidGuard-M. This is because, in each itera-
tion, TRAC is determinate to select the user with the lowest
criterion value (defined in (1)) in the single-bid model and
the user with the lowest bid for each task in the multi-bid
model. In contrast, since both BidGuard and BidGuard-M
are randomized, they cannot always guarantee to select the
user with the lowest criterion value or the lowest bid in each
iteration. DP-hSRC selects users based on a threshold price
and has no performance guarantee on the social cost.
Besides, the social cost of LOG is smaller than that of LIN,
and the social cost of LOG�M is lower than that of LIN�M.
This is because, both LOG and LOG�M prefer to select users
with low bid, as the log score function will give more proba-
bility of being selected to low-bid users.

Figs. 2a and 2b depict the impact of the number of users
on the social cost of BidGuard and BidGuard-M, respec-
tively. We see that the social cost decreases slightly when
the number of users increases for TRAC, DP-hSRC, BidG-
uard and BidGuard-M. This is because, with more users,
the platform can find more low-cost users to complete the
sensing tasks. The social cost of TRAC is lower than those of
DP-hSRC, BidGuard and BidGuard-M. The reason is same

Fig. 1. Impact of the number of sensing tasks on the social cost.
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as explained for Fig. 1. Meanwhile, for the same reason as
above, the social cost of LOG is lower than that of LIN, and
the social cost of LOG�M is lower than that of LIN�M.

In Fig. 3, we compare the social cost of incentive mecha-
nisms in the single-bid model. Let OPT denote the optimal
solution. Since finding the optimal solution takes exponen-
tial time, we set the number of the users to 10 for Fig. 3a,
and set the number of sensing tasks to 4 for Fig. 3b. We
observe that Figs. 3a and 3b have the same pattern in
Figs. 1a and 2a, respectively. The reason is similar to those
explained for Figs. 1a and 2a. Furthermore, we observe that
BidGuard sacrifices the social cost for the users’ bid privacy,
compared to TRAC and the optimal solution. Note that in
Fig. 3b, the social cost of TRAC is very close to that of OPT.
This is because TRAC is an HK-approximation algorithm,
whereHk 
 2:34 in this figure.

6.3 Evaluation of Total Payment

In Figs. 4 and 5, we plot the impact of the number of sensing
tasks and the impact of the number of users on the total pay-
ment of BidGuard and BidGuard-M, respectively. The
results show that the total payment of TRAC, DP-hSRC,
BidGuard and BidGuard-M all follow the same pattern as
the social cost. In addition, both LOG and LOG�M have
lower total payment than LIN and LIN�M, respectively. This
is because the log score function could select users with
lower bids as shown in Figs. 1 and 2. We also observe that
the total payment of DP-hSRC is lower than BidGuard and
BidGuard-M. This is because DP-hSRC selects and pays
users according to a single-price, and thus it has performance

guarantee on the total payment. However, DP-hSRC can
only achieve approximate truthfulness, which ensures that
no user is able to makemore than a slight gain in its expected
utility by bidding untruthfully. In addition, in the next sec-
tion, we will see that the privacy protection of LIN and
LIN�M are better than that of DP-hSRC.

6.4 Evaluation of Privacy Leakage

Next, we evaluate BidGuard and BidGuard-M in terms of
privacy leakage. Figs. 6a and 7a plot the impact of the num-
ber of sensing tasks on the privacy leakage for BidGuard
and BidGuard-M, respectively. Figs. 6b and 7b plot the
impact of the number of users on the privacy leakage for
BidGuard and BidGuard-M, respectively.

We observe that the privacy leakage values of BidGuard,
BidGuard-M and DP-hSRC are very small. This is because
they all achieve differential privacy. However, the privacy
leakage value of TRAC is positive infinity, which indicates a
bad differential privacy performance. This is because TRAC
does not protect users’ bid privacy, and the denominator
could be 0 for TRAC according to (7).

In both Figs. 6a and 7a, we see that the privacy leakage of
both LIN and LIN�M are always smaller than that of LOG
and LOG�M, respectively, which indicates that LIN and
LIN�M have better privacy protection performance than
LOG and LOG�M, respectively. This is because the linear
score function treats the probability of every outcome uni-
formly, however, the log score function gives more proba-
bility to the outcome with low social cost. We also observe
that the privacy leakage of both LIN and LIN�M are always

Fig. 3. Comparison of BidGuard, TRAC, DP-hSRC, and OPT.

Fig. 4. Impact of the number of sensing tasks on the total payment.

Fig. 5. Impact of the number of users on the total payment.

Fig. 6. Evaluation of privacy leakage for BidGuard.

Fig. 2. Impact of the number of users on the social cost.
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smaller than that of DP-hSRC. This is because DP-hSRC is a
single-price mechanism in which one user’s bid change
may significantly change the outcome of the mechanism,
and thus increases PL according to (7). We do not observe a
pattern of the privacy leakage when the number of tasks
increases for BidGuard. The reason is, according to the defi-
nition of privacy leakage, the difference between the proba-
bilities of two outcomes to be selected is independent of the
number of sensing tasks. However, the privacy leakage
value increases when the number of tasks increases for
BidGuard-M. This is because, according to Theorems 6 and
7, the differential privacy performance of BidGuard-M is
reversely linear to the number of sensing tasks.

In both Figs. 6b and 7b, we can see the impact of the num-
ber of users on the privacy leakage of BidGuard and BidG-
uard-M, respectively. Note that the privacy leakage value
decreases when the number of users increases for both DP-
hSRC, BidGuard and BidGuard-M. This is because the proba-
bility of each outcome decreases as the number of users
increases. Specifically, the more users in the system, the more
possible outcomes for DP-hSRC, BidGuard and BidGuard-M,
the less difference between the probabilities of two outcomes
to be selected, and thus the better differential privacy perfor-
mance. We also see the privacy protection performance of
LIN and LIN�M are better than that of LOG and LOG�M,
respectively. In addition, the privacy protection performance
of LIN and LIN�M are also better than that of DP-hSRC. The
reason for this is similar to that discussed before.

Figs. 6c and 7c show the impact of the differential privacy
parameter � on the privacy leakage for BidGuard and BidG-
uard-M, respectively. The results show that the value of �
has more impact on the privacy leakage for LOG and
LOG�M than that of LIN and LIN�M, respectively. This is
because the log score function is more sensitive than the lin-
ear score function. For LOG and LOG�M, the privacy leak-
age increases slightly when the value of � grows. This is
because, theoretically, the larger the � is, the worse the dif-
ferential privacy is achieved, and thus the higher privacy
leakage. Meanwhile, it is easy to observe that the privacy
leakage of LIN and LIN�M are smaller than that of DP-
hSRC, LOG and LOG�M, respectively. This can also be
explained by the same reason for Fig. 6a.

Figs. 6d and 7d illustrate the tradeoff between the
social cost and the privacy leakage of LOG and LOG�M,
respectively. We observe that the privacy leakage
decreases as the decreasing of �. The reason is similar to
that discussed for Fig. 6c. However, this improvement in
privacy comes at a cost of the increased social cost for
both LOG and LOG�M.

Remarks: Compared with TRAC, which does not protect
users’ bid privacy, both BidGuard and BidGuard-M

sacrifice the social cost and payment for the users’ bid pri-
vacy. Compared with DP-hSRC, BidGuard and BidGuard-
M have better bid privacy preservation and lower social
cost in most cases although incurring higher total payment.
In addition, BidGuard and BidGuard-M achieve truthful-
ness while DP-hSRC achieves approximate truthfulness.
Besides, LIN and LIN�M outperform LOG and LOG�M in
terms of privacy protection, respectively. However LOG
and LOG�M have lower social cost and payment.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed two general frameworks,
BidGuard and BidGuard-M, for privacy-preserving mobile
crowdsensing incentive mechanisms, which achieve
computational efficiency, individual rationality, truthful-
ness, approximate social cost minimization, and differential
privacy. We designed two score functions, linear and log, to
realize the frameworks. Note that, both BidGuard and
BidGuard-M with log function are asymptotically optimal
in terms of the social cost. We evaluated the performance of
our frameworks through extensive simulations.

In the future, we plan to design different score functions
which might have better performance in terms of differen-
tial privacy or proximate social cost minimization. In addi-
tion, we plan to evaluate our frameworks by using real-
world experiments.
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