
Countermeasures against False-name Attacks on
Truthful Incentive Mechanisms for Crowdsourcing

Xiang Zhang, Student Member, IEEE, Guoliang Xue, Fellow, IEEE, Ruozhou Yu, Student Member, IEEE,
Dejun Yang, Member, IEEE, Jian Tang, Senior Member, IEEE

Abstract—The proliferation of crowdsourcing brings both op-
portunities and challenges in various fields, such as environmental
monitoring, healthcare, and so on. Often, the collaborative efforts
from a large crowd of users are needed in order to complete
crowdsourcing jobs. In recent years, the design of crowdsourcing
incentive mechanisms has drawn numerous interests from the
research community, where auction is one of the commonly
adopted mechanisms. However, few of these auctions consider the
robustness against false-name attacks (a.k.a. sybil attacks), where
dishonest users generate fake identities to increase their utilities
without devoting more efforts. To provide countermeasures against
such attacks, we design TAFA as an auction-based incentive
mechanism for crowdsourcing. We prove that TAFA is truthful,
individually rational, budget-balanced, and computationally effi-
cient. We also prove that TAFA provides countermeasures against
false-name attacks, such that each user is better off not generating
any false name. Extensive performance evaluations are conducted
and the results further confirm our theoretical analysis.

Index Terms—Game theory; crowdsourcing; incentive mecha-
nism; false-name proofness; truthfulness.

1. INTRODUCTION

The popularity of smart devices and the emergence of social
networks have made crowdsourcing a new computing and
communication paradigm [12, 20]. Applications of crowdsourc-
ing include WiFi map [11], indoor navigation [5], transporta-
tion [18], and environmental monitoring [2], etc. Amazon
Mechanical Turks (AMT) [1] is an online platform, where
the Human Intelligent Tasks (HITs) are posted for users to
complete. Instead of hiring professional workers, AMT out-
sources these tasks to the crowd and offers monetary rewards
to incentivize users to complete these tasks, which demonstrates
the essence of crowdsourcing: utilizing the power of the crowd.

The AMT example also demonstrates that to complete
different kinds of HITs, such as pattern recognition, image
classification, and survey, collaborative efforts from multiple
users are needed. This kind of collaboration does not only
exist in AMT, but many other crowdsourcing applications as
well. Another instance of such collaboration is Wi-Fi signal
sensing [11], where one user may not be able to single-handedly

Zhang, Xue, and Yu are with Arizona State University, Tempe, AZ 85287.
Email: {xzhan229, xue, ruozhouy}@asu.edu. Yang is with Colorado
School of Mines, Golden, CO 80401. Email: djyang@mines.edu. Tang is
with Syracuse University, Syracuse, NY 13244. Email: jtang02@syr.edu. This
research was supported in part by NSF grants 1421685, 1444059, 1457262,
1461886, and 1525920. The information reported here does not reflect the
position or the policy of the federal government. This is an extension of the
paper [26].

detect all signal strength levels over a large region. However,
the combination of several small areas sensed by a group
of users can cover a relatively large area. Thus, with proper
arrangements, users can collaboratively complete jobs that a
single user alone cannot complete.

Since working on crowdsourcing tasks incurs costs to users
in terms of time, power, privacy leakage, and so on, most users
would not participate voluntarily. However, with appropriate
incentives, users would be more inclined to devote their efforts.
Thus, an important functionality of the crowdsourcing platform
is to provide a good incentive mechanism. Auction theory,
which is a branch of game theory, has been widely applied
in the design of incentive mechanisms for crowdsourcing.
Various design goals and properties of mechanisms have been
studied [4, 9, 10, 13, 14, 20, 25]. Among these properties, truth-
fulness ensures that a user has no incentive to bid dishonestly.
An untruthful auction is vulnerable to price manipulation and
users may leave the system in fear of unfair treatment.

Despite the large body of research efforts in truthful crowd-
sourcing auction design, few of them consider another kind
of dishonest behavior: false-name attack (a.k.a. sybil attack),
where a dishonest user may generate fake identities (false
names) and gain an increment in utility without extra efforts. A
robust crowdsourcing incentive mechanism should be resistant
against such attacks. However, many existing truthful crowd-
sourcing auctions are vulnerable to false-name attacks. We will
discuss some of these works in Section 2 and give an example
of such vulnerability in Section 4, respectively.

In this paper, we consider the crowdsourcing model where
collaborations from different users are required. We aim to
design an incentive mechanism to satisfy individual rational-
ity, budget-balance, computational efficiency, and truthfulness,
which are introduced in Section 3-C. We also want the mech-
anism to be robust against false-name attacks. Driven by the
above motivation, we propose TAFA (Truthful Auction with
countermeasures against False-name Attacks.

The main contributions of this paper are as follows.
• To the best of our knowledge, we are the first to study

truthful and false-name proof auctions for crowdsourcing,
where collaborative efforts from users are required.

• We consider the crowdsourcing model where users col-
laboratively complete tasks with intrinsic cost functions,
while dishonest users may launch false-name attacks or
submit untruthful bids.

• We design TAFA and prove that it satisfies the following

properties: individual rationality, budget-balance, compu-
tational efficiency, and truthfulness. We also prove that it
is robust against false-name attacks.

The rest of this paper is organized as follows. In Section 2,
we briefly review the state-of-art works in truthful crowdsourc-
ing auctions and false-name proof auctions. In Section 3, we
present the crowdsourcing and auction model, introduce the
false-name attack, and state the desired properties and the
design goal. In Section 4, we demonstrate the vulnerability to
false-name attacks in an existing truthful auction. In Sections 5
and 6, we propose TAFA and present the theoretical analysis,
respectively. We conduct extensive performance evaluations in
Section 7 and draw the conclusions in Section 8.

2. RELATED WORK

There is a prosperity in truthful crowdsourcing auctions. Singer
and Mittal [13] proposed two online truthful and constant-
competitive auctions to maximize the number of completed
tasks and to minimize the total payment, respectively. An
online truthful auction, BP-UCB, was proposed by Singla and
Krause [14] using regret minimization to optimize the social
welfare of all users. Yang et al. [20] studied two crowdsourcing
models, where a Stackelberg Equilibrium was computed in
the platform-centric model, and a truthful auction was pro-
posed under the user-centric model. Koutsopoulos [7] designed
a truthful auction for participatory mobile crowdsourcing to
compute participation levels and payments. Zhao et al. [27]
designed two truthful auctions for crowdsensing with con-
stant competitiveness, where the first one applies for the zero
arrival-departure model and the second one applies for the
general model. In [6], Feng et al. proposed two auctions for
location-aware crowdsourcing, where the first one computes
a near-optimal task allocation and the second one guarantees
truthfulness. Zhang et al. [24] proposed a truthful auction for
labelling in crowdsourcing with a budget constraint. In [26]
by Zhang et al., three crowdsourcing models were proposed
with user collaborations, and a truthful auction was proposed
for each of the models. None of the above truthful auctions
considered the impact of false-name attacks. Li et al. studied
truthful and group strategy-proof set cover auctions [8], where
the auction model is similar to the one in this paper. However,
they did not consider false-names attacks either.

The hardness of designing a false-name proof auction for
crowdsourcing resides in the fact that a dishonest user may
deliberately let some of its false names lose the auction in
order to increase the payments of its other false names, so
as to achieve a higher utility. Earlier works [15, 16, 21–23]
were proposed to study truthful and false-name proof auctions.
[16, 21] studied characteristics of false-name proof auctions.
The auctions in [15, 23] considered false-name proofness for
homogenous items. These auctions cannot be directly applied
to the scenario considered in this paper, where users need
to complete heterogeneous tasks. [22] provided a false-name
proof auction for heterogeneous items. It requires a pre-defined
“leveled decision set” (LDS) from the auctioneer as input. In

an LDS, there is only one copy for each item, whereas in
our scenario, multiple copies of a task need to be allocated.
Wang et al. proposed ALETHEIA [17], which, with a conflict
graph as an input, is truthful and false-name proof for the sec-
ondary spectrum market. With no such input in crowdsourcing,
ALETHEIA cannot be applied to the system model introduced
in Section 3. To our best knowledge, we are the first to design
a truthful and false-name proof auction for crowdsourcing.

3. SYSTEM MODEL

In this section, we first present the crowdsourcing model and
the corresponding auction model. We introduce the formal
definition of a false-name attack. We state the desired properties
and the design goal of this paper at the end of this section.

A. Crowdsourcing and Auction Models

The crowdsourcing system consists of a platform and a set
of users U = {1, 2, ..., n}. There is a universal set of
tasks Γ = {τ1, τ2, ..., τh}, where the h tasks are distinct
and each task is indivisible. The platform has a set of jobs
J = {J1, J2, . . . , Jm} for users to complete, where each
job is a multi-subset of Γ. A job is completed iff each task
in it is completed by the users. For example, there is a job
J6 = {τ1, τ1, τ1, τ4, τ5, τ5}. J6 is completed iff three copies of
τ1, one copy of τ4, and two copies of τ5 are completed.

Each Ji ∈ J is associated with a value νi > 0, which is
known only by the platform and private to the users. If Ji is
completed, the platform gains νi. We define the value of a set of
jobs J as the sum of each job’s value, i.e., v(J) =

∑
Ji∈J νi.

We use v to denote the vector (ν1, ν2, ..., νm).
For each user j, to complete a multi-subset of tasks Sj ⊆ Γ,

it incurs a cost cj(Sj) ≥ 0. The cost function cj(·) is
monotonically increasing and known only by user j. We set
cj(Sj) = +∞ if user j is not able to complete all tasks in Sj .

The auction model works as follows. The platform serves as
the auctioneer and announces the set J of jobs. Each user j
submits mj > 0 bids: (T 1

j , a
1
j), (T 2

j , a
2
j), ..., (T

mj
j , a

mj
j). For

each (T kj , akj), T kj is the multi-subset of tasks that user j can
complete, and akj is the corresponding ask, which is the mini-
mum amount of reward that user j requires to complete all tasks
in T kj . Note that akj and cj(T kj) are not necessarily the same.
Since there may be an exponential number of bids from a user,
we impose an upper bound on the number of bids that a user can
submit. We use M to denote this upper bound, i.e., mj ≤ M
for each user j. We define Aj = ((T 1

j , a
1
j), ..., (T

mj
j , a

mj
j))

and A = (A1, A2, ..., An).
Upon receiving the bids, the platform selects a subset of

users Uw ⊆ U as winning users, and assigns a task set Sj ∈
{T 1
j , T 2

j , ..., T
mj
j } to user j ∈ Uw. The platform also computes

a payment pj for user j. We define assignment vector S =
(S1,S2, ...,Sn) and payment vector p = (p1, p2, ..., pn). The
utility of user j is defined as the payment received minus the
incurred cost, i.e., uj = pj − cj(Sj). The platform utility is
defined as the value of the completed jobs minus the payment
to the users, i.e., u0 = v(J)−

∑
j∈U pj .

B. False-name Attacks

In a false-name attack, a user j generates κj ≥ 2 false names,
denoted as j1, j2, ..., jκj . Each false name jk submits mjk

bids: (T 1
jk
, a1jk), (T 2

jk
, a2jk), ..., (T mjkjk

, a
mjk
jk

). After the auction,
each jk is assigned to complete Sjk and its payment is pjk .
The utility of user j from this false-name attack is defined as
the payment collected by all false names minus the cost of
the union of all the assigned tasks, i.e., uj =

∑κj
k=1 pjk −

cj(
⊎
jk∈U Sjk).

C. Desired Properties and Design Goal

The crowdsourcing platform plays an important rule to apply
appropriate mechanism to allocate tasks and compute payments.
A keen concern is that users may gain higher utilities from
dishonest behaviors. This makes the mechanism vulnerable
to malicious price manipulation and untrustworthy to other
users. There are several desirable properties that a good auction
mechanism should possess. We list them in the following.
• Individual Rationality: An auction is individually rational

if for each individual, its utility is non-negative when
revealing its true valuation or cost.

• Budget Balance: An auction is budget-balanced if the
auctioneer’s utility is non-negative.

• Computational Efficiency: An auction is computationally
efficient if the auction mechanism can be executed within
a polynomial time complexity.

• Truthfulness: An auction is truthful if for each individual,
it cannot increase its utility by unilaterally deviating from
revealing its true valuation or cost.

• False-name Proofness: An auction is false-name proof
if for each individual, it cannot increase its utility by
launching a false-name attack.

The design goal of this paper is to design an incentive mech-
anism under the crowdsourcing model proposed in Section 3-A.
The incentive mechanism needs to guarantee the following
properties: individual rationality, budget-balance, computational
efficiency, truthfulness, and false-name proofness.

4. FALSE-NAME ATTACKS ON INCENTIVE MECHANISMS

In this section, we discuss the vulnerability to false-name
attacks in truthful incentive mechanisms. We present a detailed
example of how a false-name attack increases a dishonest user’s
utility in an existing truthful auction [26].

As discussed in Section 2, there are many truthful auction-
based incentive mechanisms for crowdsourcing [6, 7, 20, 24,
26]. However, these auctions do not regard the false-name
attack as a potential threat to the robustness of the mechanisms.
As a result, many auctions suffer from false-name attacks.

We use the incentive mechanisms in [26] as an illustration
of such vulnerability. In [26], three crowdsourcing models,
SS, SM, and MM, were proposed. An auction-based incentive
mechanism was designed for each model, named IMC-SS,
IMC-SM, and IMC-MM, respectively. It has been proved

that these auctions are truthful, individually rational, budget-
balanced, and computationally efficient. We choose IMC-SS as
the mechanism for illustration, whose system model is a special
case of our model in Section 3 where a user can make at most
one bid. The reason why we choose IMC-SS instead of IMC-
SM (whose system model is similar to the one in Section 3) is
that IMC-SS is easier to follow.

In IMC-SS, there are three major steps: job selection, win-
ning provider (user) selection, and pricing. In job selection, jobs
are selected with no monopoly providers. Monopoly providers
are the ones without whom the selected jobs cannot be com-
pleted. To guarantee truthfulness, monopoly providers need to
be excluded. In the winning provider selection step, providers
are selected iteratively according to the minimum ratio of ask
to the number of tasks that can be used to complete the selected
jobs. The provider is assigned to work on these tasks. In the
pricing step, for each winning provider j, a process similar to
the winning provider selection is run with j excluded. During
this new selection, each provider is also selected with the
minimum ratio of ask to the number of tasks that can be
completed by the provider. We use this ratio to multiply with
the number of tasks that j can complete at this moment, and
record the value. The maximum of these values is j’s payment.

4321
,,, ttttT1 T2 T3

1
tJ1

a1=4 a2=6 a3=3

v1=4

2
tJ2

v2=4

3
tJ3

v3=4

4
tJ4

v4=4

321
,, ttt

4
t

Fig. 1. An illustration of IMC-SS

We illustrate the vulnerability of false-name attacks on IMC-
SS using the example in Fig. 1. There are four jobs, each
consisting of one task and tagged with a private value of 4.
There are three users: 1, 2, and 3. Their submitted bids are
({τ1, τ2, τ3, τ4}, 4), ({τ1, τ2, τ3}, 6), and ({τ4}, 3), respectively.
For user 1, it’s true cost to work on {τ1, τ2, τ3, τ4} is 4.

IMC-SS works as follows.
Job Selection: It is easy to verify that all four jobs can be

completed without any monopoly user, since without any user,
all four jobs can still be completed by the other two.

Winning Provider Selection: User 1 is selected first with
the minimum ratio (a1

|T1∩{τ1,τ2,τ3,τ4}| = 1). Since user 1 can
complete all the tasks, there is only one winning user.

Pricing: This is similar to Winning Provider Selection with
user 1 excluded. At first p1 = 0 and the available task set
is T ′ = {τ1, τ2, τ3, τ4}. User 2 is selected with the minimum
ratio: a2

|T2∩T ′| = a2
|{τ1,τ2,τ3}| = 2. Then p1 is set to max{0, 2×

|T ′∩T1|} = 8. The available task set is updated to T ′ = {τ4}.
Next, user 3 is selected, and p1 is set to max{8, 31×|T

′∩T1| =
3} = 8. Thus, p1 = 8 and user 1’s utility is 4 (= 8− 4).

Now suppose that user 1 launches a false-name attack by
generating two false names: 11 with bid ({τ1, τ2, τ3, τ4}, 4) and
12 with bid ({τ1}, 1.5), as shown in Fig. 2.

4321
,,, tttt

1
tJ1

v1=4

2
tJ2

v2=4

3
tJ3

v3=4

4
tJ4

v4=4

321
,, ttt

4
t

4
11
=a

11
T

5.1
21
=a

2
T 3

T

6
2
=a 3

3
=a

1
t

A false-name attack from user 1

21
T

Fig. 2. A false-name attack from user 1

After the job selection and winning provider selection, user
11 is the only winner with assigned tasks {τ1, τ2, τ3, τ4}. To
compute p11 , we exclude user 11 and set T ′ = {τ1, τ2, τ3, τ4}.
User 12 is selected first and p11 = max{0, 1.51 ×|T

′∩T1|} = 6.
T ′ is updated to {τ2, τ3, τ4}. Next, user 2 is selected and p11 =
max{6, 6

|T ′∩T2| × |T
′ ∩ T1| = 6

2 × 3} = 9. T ′ is updated to
{τ4}. In the end, user 3 is selected and p11 = max{9, 31×|T

′∩
T1|} = 9. Thus, user 1 gains a higher utility of 5 (= 9− 4) by
launching the above false-name attack. This shows that IMC-SS
is vulnerable to false-name attacks. It can be shown that IMC-
SM is also vulnerable to false-name attacks. We omit details
here.

Note that false-name attacks may impact the auction results
in two ways. First, a dishonest user may increase its utility, at
the cost of other entities in the system (the job owner or other
users). This behaviour may result in fear of other users over
market manipulation. Second, false-name attacks will increase
the computational overhead for the auction system, because
the number of users (true users and false names) will increase.
Therefore, it is of our interest to design an incentive mechanism
that is robust against false-name attacks.

Remark 4.1: This paper is an extension of the conference
paper [26]. Therefore, there are similarities between the two,
especially in system models. A key difference between the two
is that this paper studies false-name attacks, demonstrates the
vulnerabilities of the incentive mechanisms in [26] to false-
name attacks, and presents an incentive mechanism (TAFA)
that is both truthful and robust against false-name attacks. 2

5. DETAILED DESIGN OF TAFA
The rationale behind the design of TAFA is that we break the
bid from each user into atomic bids where each atomic bid bids
only one task. Thus, as long as the auction is robust against
false-name attacks for atomic bids, the false names have no
impact on the auction results. In TAFA, we use the ratio of
ask value over task size as the atomic ask value. To provide
robustness against false-name attacks from atomic bids, we use
principles from the (dk + 1)-th price auction, where dk is the
number of tasks in τk that need to be completed. In the (dk+1)-
th price auction, the dk smallest bids are winning bids and
the payment is the (dk + 1)-th smallest value. We use these
payments to compute the final payment for each user.

Different from the algorithms in [26], we assume that there
is no monopoly user in our crowdsourcing scenario. This is
justifiable because in reality, there is often a large number of

users in crowdsourcing applications [1, 2, 11, 18, 19] and many
related works eliminate the assumption of monopoly users [3, 8]
due to such abundance.

There are two major steps in TAFA: winning user selection
and pricing. Algorithm 1 presents the winning user selection
and Algorithm 2 presents the pricing. These two algorithms are
used in Algorithm 3, which is the main algorithm of TAFA.

Algorithm 1: WinUserSel(U ,J ,A)

Output: Uw, δ(·),S
1 Uw ← ∅, Sj ← ∅, and δ(j)← 0 for each j ∈ U ;
2 T ∗ ←

⊎
Ji∈J Ji;

3 while T ∗ 6= ∅ do
4 T k∗j∗ ← arg min

T kj
{ akj
|T kj |
|j ∈ U \ Uw, T kj ∩ T ∗ 6= ∅};

5 δ(j∗)← k∗, Sj∗ ← T k
∗

j∗ ;
6 T ∗ ← T ∗ \ T k∗j∗ , Uw ← Uw ∪ {j∗};
7 end
8 return Uw, δ(·),S

Algorithm 2: Pricing(j,Uw,U ,J ∗,A,Sj)
Output: pj

1 if j /∈ Uw then
2 pj ← 0;
3 else
4 p′j ← 0, U ′w ← ∅, T ′ ←

⊎
Ji∈J Ji;

5 S ′l ← ∅ and δ′(l)← 0 for each l ∈ U ;
6 while T ′ 6= ∅ do
7 T k′j′ ← arg min

T kl
{ akl
|T kl |
|l ∈ U \ U ′w, T kl ∩ T ∗ 6=

∅, l 6= j};
8 S ′j′ ← T k

′

j′ , δ′(j′)← k′;
9 U ′w ← U ′w ∪ {j′}, T ′ ← T ′ \ T k

′

j′ ;
10 end
11 for each τk ∈ Sj do
12 for each user l such that τk ∈ S ′l do

13 p′j ← max{p′j ,
a
δ′(l)
l

|S′l |
};

14 end
15 end
16 pj ← p′j |Sj |;
17 end
18 return pj ;

Winning User Selection: Algorithm 1 takes the user set
U , job set J , and bids A as input, and returns the winning
user set Uw, assignment function δ(·), and assignment vector
S. δ(j) = k indicates that user j is assigned to complete T kj . If
j is not assigned to any task, δ(j) = 0. The algorithm proceeds
iteratively. In each iteration (Lines 4 to 6), we select a user with
the minimum ask-per-task value.

In Line 1, we initialize the winning user set Uw to ∅. For
each user j, we initialize Sj to ∅ and δ(j) to 0. In Line 2, all
tasks from different jobs are combined into a multi-set of tasks

T ∗, which is the set of tasks yet to be assigned. To proceed
with each iteration, we select a submitted task set from users
not in Uw with the minimum ratio of ask value to the task
set size (Line 4). We break ties with an arbitrary order, e.g.,
a non-decreasing user index order, if there are ties during this
selection. Once we select the task set T k

∗

j∗ , δ(j∗) is updated to
k∗, and T k∗j∗ is assigned to user j∗ as Sj∗ (Line 5). We update
the remaining task set T ∗ and add the selected user into Uw in
Line 6. The iteration stops when T ∗ becomes ∅.

Pricing: Algorithm 2 computes the payment for each user j.
A process similar to WinUserSel is run over the users with
user j excluded temporarily. For each task assigned to j in
the previous step, we compute a value which is the maximum
per-task ask of the allocated tasks in the pricing step. The
maximum of these values over all tasks assigned to j is the
per-task payment for user j. Then the payment pj is the per-
task payment times the number of tasks assigned to user j.

In Line 2, user j’s payment is 0 if it is not a winning user.
Otherwise, we initialize the per-task payment p′j to be 0 in
Line 4. Lines 5 to 10 are similar to Algorithm 1, except that user
j cannot be selected into the winning user set U ′w according to
Line 7. To compute pj , we first compute the per-task payment
p′j . In Line 11, we examine each task τk ∈ Sj that is assigned
to user j by Algorithm 1. If this task is assigned to another
user l who is selected into U ′w, p′j is set to the higher one of p′j
and user l’s per-task ask value (Lines 12 and 13). In Line 16,
the payment pj is computed as the per-task payment p′j times
the number of tasks assigned to j.

The main algorithm of TAFA is illustrated in Algorithm 3.
We run WinUserSel to select the winning users and assign
tasks. Then we compute the payment for each user. We compare
the value of the completed jobs v and the total payment p to
guarantee budget-balance. If v ≥ p, the auction is successful;
it is cancelled otherwise.

Algorithm 3: TAFA(U ,J ,v,A)

1 (Uw, δ(·),S)←WinnerSel(U ,J ,A);
2 for each j ∈ U do
3 pj ← Pricing(j,Uw,U ,J ∗,A,Sj);
4 end
5 v ←

∑
Ji∈J νi, p←

∑
j∈U pj ;

6 if v < p then
7 Sj ← ∅, for each j ∈ Uw, Uw ← ∅, p← 0;
8 end
9 return Uw,S,p.

A Walk-through Example:
To provide a better understanding of how TAFA works, we

present a walk-though example in Fig. 3.
There are two jobs J = {J1, J2} with v1 = 14 and v2 = 18,

respectively. There are four users. The submitted tasks and the
corresponding ask values are shown in the figure.

Winning User Selection: Initially, Uw = ∅ and T ∗ =
J1

⊎
J2 = {τ1, τ2, τ3, τ4}. T 1

1 is selected as T k∗j∗ in the first

31
,tt

432
,, ttt

542
,, ttt

1
t 432

,, ttt

1
t

1

1
T

1

2
T

1

3
T

1

4
T

1
J

2
J

4
1

1
=a 12

1

2
=a 6

1

3
=a 14

1

4
=a

2

1
T

2

2
T

2

3
T

10
2

1
=a 14

2

2
=a 13

2

3
=a

2
t

14
1
=v 18

2
=v

321
,, ttt

31
,tt

3

1
T

13
3

1
=a

42
,tt

Fig. 3. A walk-though example of TAFA

iteration with a11
|T 1

1 ∩T ∗|
= 4
|{τ1,τ3}| = 2. We update δ(1) = 1,

S1 = {τ1, τ3}, T ∗ = {τ2, τ4}, and Uw = {1}. Next, T 1
2 is

selected. We update δ(2) = 1, S2 = {τ2, τ3, τ4}, T ∗ = ∅, and
Uw = {1, 2}.

Pricing:
• p1: Initially, p′1 = 0, U ′w = ∅, and T ′ = {τ1, τ2, τ3, τ4}. In

the first iteration, T 1
2 is selected as T k′j′ with a12

|T 1
2 ∩T ′|

=
12
3 = 4. We update S ′2 = {τ2, τ3, τ4}, δ′(2) = 1, U ′w =
{2}, and T ′ = {τ1}. In the next iteration, T 1

3 is selected
as T k′j′ . We update S ′3 = {τ1}, δ′(3) = 1, U ′w = {2, 3},
and T ′ = ∅. For τ1 ∈ S1, we have τ1 ∈ S ′3 and p′1 =

max{p′1,
a
δ′(3)
3

|S′3|
} = 6. For τ3 ∈ S1, we have τ3 ∈ S ′2, and

p′1 = max{p′1,
a
δ′(2)
2

|S′2|
= 4} = 6. Thus, p1 = p′1|S1| = 12.

• p2: With the same method, we have p2 = 14.
Since v = v1 + v2 = 32, p = p1 + p2 = 26, and v > p,

the auction is successful, with Uw = {1, 2}, S1 = {τ1, τ3},
S2 = {τ2, τ3, τ4}, p1 = 12, and p2 = 14.

6. ECONOMIC PROPERTIES OF TAFA
In this section, we perform theoretical analysis on TAFA.

Theorem 1: TAFA is individually rational, budget-balanced,
computationally efficient, and truthful. No user can increase its
utility by unilaterally launching a false-name attack. 2

We prove Theorem 1 with the following lemmas.
Lemma 6.1: TAFA is individually rational. 2

Proof: Let j be any user that bids truthfully, i.e., akj =
cj(T kj) for k = 1, . . . ,mj . We need to prove that uj ≥ 0.

If j /∈ Uw, uj = 0. If j ∈ Uw, when j is selected to Uw,
a
δ(j)
j

|T δ(j)j |
=

cj(T δ(j)j)

|T δ(j)j |
is no larger than

ak
∗
j∗

|T k∗
j∗ |

for any j∗ selected

after j. In Pricing, p′j ≥ max{ a
k∗
j∗

T k∗
j∗
|j∗ 6= j, j∗ ∈ U ′w} ≥

cj(T δ(j)j)

|T δ(j)j |
. Thus, pj = p′j |Sj | ≥ c

δ(j)
j and uj ≥ 0.

Lemma 6.2: TAFA is budget-balanced. 2

Proof: If Uw = ∅, u0 = 0. If Uw 6= ∅, u0 =
∑
Ji∈J vi −∑

j∈U pj ≥ 0 according to Line 6 in Algorithm 3.
Lemma 6.3: TAFA is computationally efficient. 2

Proof: The time complexity of TAFA is O(n2Mt), where
t = max{|T ∗|,m}. Thus, it is polynomial-time executable.

Lemma 6.4: TAFA is truthful. 2

Proof: We show that for any user j, it can-
not have a higher utility by unilaterally changing its

bid from Āj = ((T 1
j , cj(T 1

j)), . . . , (T mjj , cj(T
mj
j))) to

Âj = ((T 1
j , a

1
j), . . . , (T

mj
j , a

mj
j)) with (a1j , . . . , a

mj
j) 6=

(cj(T 1
j), . . . , cj(T

mj
j)). We use case analysis.

Case 1: User j loses the auction by bidding Āj , which
implies that at any iteration during the winner selection stage

we have
ak
∗
j∗

|T k∗
j∗ |
≤ mink{

cj(T kj)

|T kj |
|T kj ∩ T ∗ 6= ∅}. If by changing

the bid, user j remains a loser, its utility does not increase.
If user j unilaterally changes its bid to Âj , and wins the
auction to work on T δ(j)j with payment p̂j , then we have

p̂′j = max{ ak
′
j′

|T k′
j′ |
} = max{ ak

∗
j∗

|T k∗
j∗ |
} ≤ cj(T δ(j)j)

|T δ(j)j |
. Thus its result-

ing utility is uj = p̂j − cj(T δ(j)j) = p̂′j |T
δ(j)
j | − cj(T δ(j)j) ≤ 0.

Case 2: User j wins the auction by bidding Āj , earning a
payment of pj to work on T δ(j)j . Hence at the iteration where

user j is selected to enter Uw,
c
δ(j)
j

|T δ(j)j |
is the minimum among

all values
ak
∗
j∗

|T k∗
j∗ |

, such that T k∗j∗ ∩ T ∗ 6= ∅. By Lemma 6.1,

uj = pj − cj(T δ(j)j) ≥ 0.
Case 2.1: By changing its bid, j becomes a loser, or j still

works on T δ(j)j . If j becomes a loser, j’s utility becomes 0. If
j still works on T

δ(j)
j , by Algorithm 2, the payment pj does

not change, hence user j’s utility does not change as well.
Case 2.2: By changing its bid, user j wins to work on

T k′j with k′ 6= δ(j), earning a payment p̂j . Since in the
pricing stage, the payment for user j does not depend on
the bid of j (user j is excluded from Uw in Algorithm 2),
we have p̂′j = p′j . The second statement in Case 2 implies

that
cj(T δ(j)j)

|T δ(j)j |
≤ cj(T k

′
j)

|T k′j |
. Therefore (p̂′j −

cj(T k
′

j)

|T k′j |
)|T δ(j)j | ≤

(p′j −
cj(T δ(j)j)

|T δ(j)j |
)|T δ(j)j | = pj − cj(T δ(j)j), i.e., the utility of

user j cannot be increased by changing its bid from Āj to Âj
unilaterally. This proves the lemma.

Lemma 6.5: TAFA provides countermeasures against false-
name attacks, i.e., no user can increase its utility by unilaterally
launching a false-name attack. 2

Proof: We prove this lemma by proving that a user cannot
increase its utility by generating two false names. The case with
more false names can be inferred by induction.

Suppose for user j, it generates two false names j1 and j2,
each with bid Aj1 = {(T 1

j1
, a1j1), . . . , (T mj1j1

, a
mj1
j1

)} and Aj2 =

{(T 1
j2
, a1j2), . . . , (T mj2j2

, a
mj2
j2

)}, respectively. After the auction,
j1 is assigned to work on Sj1 with payment pj1 and j2 is
assigned to work on Sj2 with payment pj2 . We prove that if
j does not generate these two false names, the utility when
bidding its truthful bid (Sj1

⊎
Sj2 , cj(Sj1

⊎
Sj2)), is no less

than the utility from the false-name attack, i.e., pj1 + pj2 −
cj(Sj1

⊎
Sj2). We use case analysis.

Case 1: None of j1 and j2 is a winning user. The utility from
this false-name attack is 0. By Lemma 6.1, j’s utility is non-
negative with truthful bids. Thus, j’s utility is not increased.

Case 2: One of j1 and j2 is a winning user. Without loss
of generality, assume that j1 is the winner and j2 is the loser.

Let U−j = {1, 2, ..., j − 1, j + 1, ..., n}, i.e., all users except
j. Let Ū ′w be the winning user set in Algorithm 2 for user
j with j’s truthful bid and Û ′w be the winning user set in
Algorithm 2 for j1 with the false-name attack, respectively.
For each task τk ∈ Sj1 , the corresponding per-task payment
p′j1 is computed as the dk-th smallest payment among the
winning users in Algorithm 2, where dk is the number of
tasks τk in the multi-task T ∗. When selecting Ū ′w and Û ′w,
Ū ′w is selected from U−j and Û ′w is selected from U−j ∪ {j2}
according to line 7 in Algorithm 2. Each time a user is to be
selected into Ū ′w and Û ′w, we select the one with the minimum
per-task ask value. Since Ū ′w is selected from U−j and Û ′w is
selected from U−j ∪{j2}, we know that the selected minimum
per-task ask value from U−j ∪ {j2} is no more than the one
selected from U−j . Considering that p′j1 is the dk-th smallest
per-task ask value in Û ′w and p′j is the dk-th smallest per-
task ask value in Ū ′w, we have p′j1 ≤ p′j . Therefore, we have
p′j1 |Sj1 |−cj(Sj1) ≤ p′j |Sj |−cj(Sj) with Sj = Sj1

⊎
Sj2 when

j2 loses the auction.
Case 3: Both j1 and j2 are winning users. With a similar

analysis approach to Case 2, we have p′j1 |Sj1 | ≤ p′j |Sj | and
p′j2 |Sj2 | ≤ p

′
j |Sj |. Thus, p′j1 |Sj1 |+ p′j2 |Sj2 | − cj(Sj1

⊎
Sj2) ≤

p′j(|Sj1 |+ |Sj2 |)− cj(Sj1
⊎
Sj2) = pj − cj(Sj).

Cases 1-3 complete the proof for this lemma.

7. PERFORMANCE EVALUATION

We implemented our incentive mechanism TAFA for the
crowdsourcing model, and ran extensive tests on a Linux PC
with Intel Core I7-4770 3.5Hz processor and 16GB memory.

A. Performance Metrics and Simulation Setup

Performance Metrics: We study platform utility, average user
utility, and running time. We compare TAFA with IMC-
SM [26] (whose system model is similar to the one in Section 3)
using these metrics. We also evaluate the truthfulness and
robustness against false-name attacks, by selecting some users,
letting them submit untruthful bids or launch false-name attacks
unilaterally, and monitoring the corresponding utilities.
Simulation Setup: We evaluate the platform utility, average
user utility, and running time by varying the number of users n
and the number of jobs m from 50 to 800 with an increment of
50, respectively. To evaluate the impact of n, we fixed m = 100.
Similarly, to evaluate the impact of m, we fixed n = 100. We
set |Γ| = 10, and generated each job as a random multi-subset
of Γ with a maximum size of 10. The valuation of each job
is uniformly distributed over (0, 80]. Each user can submit up
to 5 random multi-subsets of T . The size of each multi-subset
does not exceed 10, and the ask-per-task value for each subset
is uniformly distributed over (0, 2.5]. The results are averaged
over 100 instances for each parameter configuration.

B. Results and Observations

Fig. 4 shows the impact of m and n on platform utility
for TAFA and IMC-SM. In Fig. 4(a), with the increase of
m, platform utilities in TAFA and IMC-SM increase. This

is because users can complete more jobs when m increases.
However, with more jobs, the competition among users are
less fierce, and thus the payment for each user increases.
That is why the growth of platform utility is slower than the
linear speed in terms of m. On the other hand, with more
users, the competition among users is more fierce, which leads
to decrements in payments. That explains why the platform
utilities in TAFA and IMC-SM increase in Fig. 4(b). When
the market is saturated with users, the platform utility stays
steady. Another observation is that the platform utility of IMC-
SM is higher than that of TAFA. This is because TAFA takes
the minimum per-task ask from users as the selection metric
while IMC-SM uses the minimum ask value. Therefore, the
total payment of IMC-SM is lower than that of TAFA. Since
the margin between the platform utilities of TAFA and IMC-SM
is relatively small, we take this margin as a tolerable tradeoff
to the robustness against false-name attacks.

Fig. 4. Platform Utility

Fig. 5 shows the average user utility, defined as the total
utilities of all users over the number of users. With the increase
of m, average user utility rises and then remains steady. The
reason is that with more tasks to be completed, the maximum
per-task ask in Algorithm 2 increases for each user. With the
increase of n, the average user utility drops dramatically for
both TAFA and IMC-SM. This is because with more users, the
competition among users becomes more fierce and it leads to
a decrement in payments. Furthermore, the average user utility
of TAFA is higher than that of IMC-SM, as the payment for
users in TAFA is higher than that of IMC-SM. The detailed
reasoning has been provided in the previous paragraph.

Fig. 5. Average user utility

Fig. 6 shows the impact of m and n on the running time
of TAFA and IMC-SM. We only record the time spent on

winning user selection and pricing steps for IMC-SM, in order
to make a fair comparison with TAFA. With the increment of
m and n, the running time of TAFA and IMC-SM increases
with an approximated speed of O(m) and O(n2), respectively.
These results match our analysis in Lemmas 6.3. Furthermore,
the time consumption of TAFA is higher than that of IMC-
SM, since TAFA calculates the per-task payment with two
more for-loops in Algorithm 2, Line 11 to Line 15. With the
relatively small gap between the two running times, the extra
time consumption of TAFA is tolerable.

Fig. 6. Running time

Fig. 7 shows the impact of (untruthful) bids and false-name
attacks on user utilities. We fixed m = 100 and n = 1000,
and selected three users: 30, 51, and 62. User 30 is a loser
when revealing its cost 9.66. Users 51 and 62 are winners
when revealing their costs 4.11 and 5.25, respectively. To
validate truthfulness, we let each of these users unilaterally
change its bid in [0, 15], see Fig. 7(a). We observe that a user
cannot increase its utility by bidding dishonestly. To validate
robustness against false-name attacks, we let each of these users
create up to 8 false names. For each false name, the submitted
task set is a subset of the submitted tasks of the user, and the
ask-per-task value is randomly distributed around its cost-per-
task value. The results are presented in Fig. 7(b). We observe
that a user cannot increase its utility by unilaterally launching
false-name attacks.

Fig. 7. Impact of (untruthful) bids and false-name attacks on user utilities

8. CONCLUSIONS

In this paper, we studied truthful and false-name proof auctions
in crowdsourcing, where collaborative efforts from crowdsourc-
ing users are needed. We designed an incentive mechanism

TAFA, and proved that it is individually rational, budget-
balanced, computationally efficient, and truthful. We also
proved that TAFA provides countermeasures against false-name
attacks. Extensive simulation results are presented to further
study the mechanism and confirm our analysis.

REFERENCES

[1] Amazon Mechanical Turks, https://www.mturk.com/mturk/welcome.
[2] Creek Watch, http://creekwatch.researchlabs.ibm.com.
[3] N. Devanur, M. Mihail, and V. Vazirani, “Strategyproof cost-sharing

mechanisms for set cover and facility location games,” in EC ’03, pp.
108–114.

[4] D. DiPalantino and M. Vojnovic, “Crowdsourcing and all-pay auctions,”
in ACM EC’09.

[5] J. Dong, Y. Xiao, Z. Ou, Y. Cui, and A. Yla-Jaaski, “Indoor tracking
using crowdsourced maps,” in ACM/IEEE IPSN’16, pp. 1–6.

[6] Z. Feng, Y. Zhu, Q. Zhang, H. Zhu, J. Yu, J. Cao, and L. Ni, “Towards
truthful mechanisms for mobile crowdsourcing with dynamic smart-
phones,” in IEEE ICDCS’14, pp. 11–20.

[7] I. Koutsopoulos, “Optimal incentive-driven design of participatory sens-
ing systems,” in IEEE INFOCOM’13, pp. 1402–1410.

[8] X.-Y. Li, Z. Sun, W. Wang, X. Chu, S. Tang, and P. Xu, “Mechanism
design for set cover games with selfish element agents,” Theor. Comput.
Sci., vol. 411, no. 1, pp. 174–187, 2010.

[9] Q. Ma, L. Gao, Y. F. Liu, and J. Huang, “A contract-based incentive
mechanism for crowdsourced wireless community networks,” in IEEE
WiOpt’16, pp. 1–8.

[10] M. Pouryazdan, B. Kantarci, T. Soyata, and H. Song, “Anchor-assisted
and vote-based trustworthiness assurance in smart city crowdsensing,”
IEEE Access’16, vol. 4, pp. 529–541.

[11] Sensorly, https://www.sensorly.com.
[12] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Sensing as a service: Chal-

lenges, solutions and future directions,” IEEE Sensors Journal, vol. 13,
no. 10, pp. 3733–3741, 2013.

[13] Y. Singer and M. Mittal, “Pricing mechanisms for crowdsourcing mar-
kets,” in WWW’13, pp. 1157–1166.

[14] A. Singla and A. Krause, “Truthful incentives in crowdsourcing tasks
using regret minimization mechanisms,” in WWW’13, pp. 1167–1178.

[15] K. Terada and M. Yokoo, “False-name-proof multi-unit auction protocol
utilizing greedy allocation based on approximate evaluation values,” in
AAMAS’03, pp. 48–62.

[16] T. Todo, A. Iwasaki, M. Yokoo, and Y. Sakurai, “Characterizing false-
name-proof allocation rules in combinatorial auctions,” in AAMAS ’09,
pp. 265–272.

[17] Q. Wang, B. Ye, B. Tang, T. Xu, S. Guo, S. Lu, and W. Zhuang, “Aletheia:
Robust large-scale spectrum auctions against false-name bids,” in ACM
MobiHoc’15, pp. 27–36.

[18] Waze, https://www.waze.com.
[19] Yahoo! Answers, http://answers.yahoo.com/.
[20] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:

Incentive mechanism design for mobile phone sensing,” in ACM MOBI-
COM’12, pp. 173–184.

[21] M. Yokoo, Y. Sakurai, and S. Matsubara, “The effect of false-name
declarations in mechanism design: towards collective decision making
on the internet,” in IEEE ICDCS’00, pp. 146–153.

[22] ——, “Robust combinatorial auction protocol against false-name bids,”
AI’01, vol. 130, no. 2, pp. 167 – 181.

[23] ——, “Robust multi-unit auction protocol against false-name bids,” in
IEEE IJCAJ’01.

[24] Q. Zhang, Y. Wen, X. Tian, X. Gan, and X. Wang, “Incentivize crowd
labeling under budget constraint,” in IEEE INFOCOM’15.

[25] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li, “Free market of
crowdsourcing: Incentive mechanism design for mobile sensing,” IEEE
TPDS, vol. PP, no. 99, pp. 1–1, 2014.

[26] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Truthful incentive
mechanisms for crowdsourcing,” in IEEE INFOCOM’15, pp. 2830–2838.

[27] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint,” in IEEE INFOCOM’14, pp. 1213–1221.

Xiang Zhang (Student Member 2013) received his
B.S. degree from University of Science and Technol-
ogy of China, Hefei, China, in 2012. Currently he
is a Ph.D student in the School of Computing, In-
formatics, and Decision Systems Engineering at Ari-
zona State University. His research interests include
network economics, incentive mechanism design, and
game theory in crowdsourcing and cognitive radio
networks.

Guoliang Xue (Member 1996, Fellow, 2011) is a
Professor of Computer Science and Engineering at
Arizona State University. He received the PhD degree
in computer science from the University of Minnesota
in 1991. His research interests include survivability,
security, and resource allocation issues in networks.
He is the Area Editor of IEEE Transactions on
Wireless Communications for the area of Wireless
Networking. He is the Vice President for Conferences
of the IEEE Communications Society.

Ruozhou Yu (Student Member 2013) received his
B.S. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2013. He is
currently pursuing the Ph.D degree in the School
of Computing, Informatics, and Decision Systems
Engineering at Arizona State University. His inter-
ests include software-defined networking, data center
networking, and network function virtualization.

Dejun Yang (Student Member 2008, Member 2013)
is the Ben L. Fryrear Assistant Professor of Computer
Science at Colorado School of Mines. He received his
PhD degree from Arizona State University in 2013
and BS degree from Peking University in 2007. His
research interests lie in optimization and economic
approaches to networks. He received Best Paper
Awards at IEEE ICC’2011 and IEEE ICC’2012. He
has served as a TPC member for many conferences
including IEEE INFOCOM.

Jian Tang is an associate professor in the Department
of Electrical Engineering and Computer Science at
Syracuse University. He earned his Ph.D degree in
Computer Science from Arizona State University in
2006. His research interests lie in the areas of Cloud
Computing, Big Data and Wireless Networking. He
received an NSF CAREER award in 2009 and a Best
Paper Award in IEEE ICC’2014. He serves as an
editor for IEEE Transactions on Vehicular Technology
and an editor for IEEE Internet of Things Journal.

