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Abstract—Crowdsensing is a sensing method which involves
participants from general public to collect sensed data from
their mobile devices, and also contribute and utilize a common
database. To ensure a crowdsensing system to operate properly,
there must be certain effective and efficient incentive mechanism
to attract users and stimulate them to submit sensing data
with high quality. Intuitively, the agreement on the qualities
and payments in crowdsensing systems can be best modeled
as a contract. However, none of existing incentive mechanisms
consider data quality through effective contract design. In this
paper, we design two quality-aware contract-based incentive
mechanisms for crowdsensing, named QUAC-F and QUAC-I,
under full information model and incomplete information model,
respectively, which differ in the level of users’ information known
to the system. Both QUAC-F and QUAC-I are guaranteed to max-
imize the platform utility while satisfying individual rationality
and incentive compatibility. We evaluate the performance of our
designed mechanisms based on a real dataset.

I. INTRODUCTION

The term “crowdsensing” refers to acquiring sensor data
from a large and diffuse group of mobile devices and main-
taining and sharing the knowledge by a common database. The
sensing devices may include, for example, smartphones, sensor
embedded gaming systems, and in-vehicle sensor devices. Due
to the rapid emergence of these mobile devices and their
remarkable improvement of sensing capability and analyzing
techniques, crowdsensing is receiving more and more atten-
tion, not only from industry, but also academia.

A typical crowdsensing system consists of three main
components, the platform, the requesters and the users. The
requesters provide tasks they are willing to pay people to
do. The platform then publishes the tasks and the payment
rules. The users can choose the tasks that they are interested
in and capable of performing. At last, after completing their
selected tasks and submitting the data, the users will be paid
accordingly. In our model, we only consider the interaction
between the platform and the users. Without loss of generality,
we assume that the platform makes the decision on the
payment rules.

Compared to traditional business models, the platform can
save significant financial resources since they no longer need
to hire experts or deploy special devices. However, such advan-
tages are valid only if there are enough users participating in
the crowdsensing system and they are providing sensing data
with good quality. To incentivize the users, the platform either
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provides services to or pays the users with money in return.
The question is “how much should the users be awarded?”

There exist some auction-based incentive mechanisms
which consider both the payment and the quality. Their main
approach is to choose the users who ask less money and
provide higher quality. However, auction-based mechanisms
suffers from the long period of time before the getting the auc-
tion result, and has a higher risk of not recruiting enough users.
Moreover, no existing auction-based mechanisms considering
the fact that users have the ability to change the qualities of
the sensing data. In addition, auction-based mechanisms may
be hard to implement [1] and result in price discrimination [2].

Therefore, we choose to use contract-based incentive mech-
anisms over auctions. The platform will publish quality-
payment bundles to users and let them make their decisions to
maximize their utilities and perform tasks with corresponding
qualities. By designing the contracts carefully, we aim to
maximize the utility of the platform. Note that contracts are
the most intuitive way to define the relationship between
the quality and the payment and have already been used in
many crowdsourcing/crowdsensing platforms, such as Amazon
Mechanical Turk and Gigwalk.

In this paper, we consider two models, full information
model and incomplete information model. In the full infor-
mation model, the platform has the knowledge of users’ basic
characteristics, e.g., ability distribution, cost function and risk
attitude, but does not know how much effort the users will ex-
ert to complete tasks. The platform determines a contract that
specifies the expected quality and a payment function which is
a function of data quality. Given the contract, the users decide
how much effort to exert in order to maximize their utilities.
In the incomplete information model, the basic characteristic
information is private to the users themselves. But the platform
knows the distribution of users’ characteristics and designs a
contract consisting of multiple contract items, which are the
desired qualities and their corresponding payments. Given the
contract, the users choose and fulfill the contract items that
maximize their utilities. For each of these two models, we
design a QUality-Aware Contract-based incentive mechanism,
named QUAC-F and QUAC-I, respectively, which maximizes
the platform utility while guaranteeing individual rationality
and incentive compatibility.

Note that since crowdsensing system can be regarded as
a special crowdsourcing system, our mechanisms are also
applicable to crowdsourcing system where the quality can be
quantified for submitted tasks.

The contributions of our work are:
1) To the best of our knowledge, we are the first to design

quality-aware contract-based incentive mechanisms for
both full information model and incomplete information



model where the platform knows different levels of users’
information. Such mechanisms represent reality closely.

2) In the full information model, we allow uncertainty in
the intended qualities of users’ submitted data with their
efforts. We also consider that users’ different attitudes to-
ward risk affect their choices. We design a quality-aware
contract-based incentive mechanism, named QUAC-F,
which maximizes the platform’s utility while guaran-
teeing individual rationality and incentive compatibility.
QUAC-F also guarantees that users will exert extra efforts
to increase data qualities.

3) In the incomplete information model, we consider pos-
sible errors of the platform evaluating the data qualities.
We design a quality-aware contract-based incentive mech-
anism, named QUAC-I, which maximizes the platform’s
utility while guaranteeing individual rationality and in-
centive compatibility.

II. RELATED WORK

A. Existing Incentive Mechanisms for Crowdsensing

There is a large body of research on the design of incen-
tive mechanisms for crowdsensing [3–14]. The above papers
served the purpose to recruit users effectively, but could
not incentivize high quality. Note that crowdsensing can be
regarded as a special type of crowdsourcing. Thus many
incentive mechanisms for crowdsourcing can be applied to
crowdsensing. Therefore, we also include them in this section.

There are also a few papers considering quality in the design
of incentive mechanisms for crowdsourcing. Gao et al. [15]
proposed a cost-effective mechanism that employs quality-
aware worker training as a tool to stimulate workers to provide
high-quality solutions. However, this mechanism assumed
users choose actions to optimize their long-term utilities, thus
it is not applicable to crowdsourcing systems where users
join and leave dynamically. Through randomized behavioral
experiments on Amazon Mechanical Turk, Ho et al. [16]
showed that simple performance-based payment schemes with
fixed bonus may not always incentivize high quality data. Peng
et al. [17] applied the expectation maximization algorithm
to estimate quality and information theory to quantify user
contribution. They then determined the payment proportional
to user contribution. However, their mechanism maximizes
the platform utility, guarantees individual rationality, but fails
to satisfy incentive compatibility. Han et al. [18] studied a
quality-aware Bayesian pricing problem and design algorithms
to choose a single payment to recruit enough users with rea-
sonable sensing qualities while minimizing the total payment.

In all, current incentive mechanisms for crowdsensing can
be classified to two groups, pricing-based mechanism and
auction-based mechanism. Pricing-based mechanisms are used
when the platform knows how users evaluate their efforts
so that they will perform the task once given the payment.
However, the valuation information is hardly known to the
platform in reality. Auction-based mechanisms are used when
the valuation of the users’ efforts are unknown so that the
platform can hold auctions to reveal the expecting payment.
Such mechanisms can make the tasks performed with the
lowest costs, but can not guarantee the quality of sensing

results. Note that Jin et al. [19] tried to consider the data
quality when deciding the winners of auction. However, their
technique can not incentivize users to improve the data quality,
since the truthfulness property only holds on the money they
requested, but not the qualities they can provide.

In this paper, we propose two quality-aware contract-based
incentive mechanisms based on different level of knowledge
on users’ characteristics. Such mechanisms represent reality
closely but have never been studied before, especially when
considering the risk attitude and evaluation errors.

B. Contract-Based Mechanisms in Other Applications

Although contract-based incentive mechanism is new to
the crowdsensing paradigm, it has been applied in many
other applications. Knapper et al. [20] applied contract the-
ory to cloud computing marketplaces to optimize the ser-
vice provider’s profit. Gao et al. [21] modeled the spectrum
trading in cognitive radio networks as a monopoly market
and designed a feasible monopolist-dominated quality-price
contract to maximize the utility of the primary user. Zhang et
al. [22] proposed a contract-theoretic approach for device-to-
device communications in cellular networks to motivate user
involvement. However, we can not directly apply the above
mechanisms to crowdsensing since they are not designed to
incentivize high quality data. In addition, we consider the
uncertainty in data quality and the imperfection of quality
evaluation in our paper.

III. SYSTEM MODEL

In this paper, we consider a crowdsensing system consisting
of one platform and n users. Based on different levels of
information known to the platform, we consider two models,
full information model and incomplete information model. In
the full information model, the platform knows the basic
characteristics (e.g. ability distribution, cost function and risk
attitude, etc) of users based on their previous working his-
tories, but does not know their actions (how much effort to
contribute). In the incomplete information model, however, the
platform only knows the distribution of users’ general charac-
teristics which are related to users’ ability and willingness.

The contract-based incentive mechanisms under both mod-
els proceed similarly. For every task, the platform will de-
sign a contract which consists of quality-payment bundles.
We call the contract maximizing the platform’s utility the
optimal contract. Here the data quality may refer to resolution,
contrast, and sharpness of photos, accuracy of GPS locations,
and estimation accuracy of air quality. After the task and the
contract are published to the users, each user will make their
choices and perform the task with the prescribed quality. The
users also have the right to reject all contracts. Once the task
is finished, each user sends the data back to the platform.
The platform will evaluate the quality of submitted data and
pay the users according to the contract. The data quality can
be evaluated by calculating the deviation from ground truths,
if available, or using algorithms proposed in [23], otherwise.
This process is shown in Fig. 1. Since all the steps are
repeatedly performed for each task, we will only consider one
task in the rest of the paper.
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Fig. 1: Quality-aware contract-based incentive mechanism for
crowdsensing

While designing contract-based incentive mechanisms, we
strive to satisfy the following two properties:

Definition 1: Individual Rationality (IR): A contract-based
incentive mechanism is individual-rational if any user achieves
at least its reserved utility by making a choice to maximize
its utility.

Definition 2: Incentive Compatibility (IC): A contract-
based incentive mechanism is incentive-compatible if any user
achieves maximum utility by contributing effort to provide
expected quality specified in contract item corresponding to
its characteristics.

These two properties are desired because of the following
reasons. IR property ensures user participation. Note that the
reserved utility of a user might be greater than zero if the
user has other working opportunities. If IR is not satisfied, the
users may not participate in the crowdsensing system. Without
enough participating users, the effectiveness of the system
will be significantly degraded. Therefore, we must ensure that
any user can achieve its reserved utility with our incentive
mechanisms1. IC property ensures the platform takes control
of the system. Note that users are selfish and always try to
maximize their utilities. If the platform wants to induce a user
to submit data with certain quality, instead of some other
(presumably lower) quality, then the incentive mechanism
must set the payment for that quality so that the user achieves
its maximum utility in this case. Only by controlling users’
actions through IC can the platform control the whole system.

A. Full Information Model
In this model, the users have different abilities towards

performing the task, affected by education level, skill level,
experience, etc. Once participating, each user can control how
much effort it invests in the task, which is the increment of
data quality achieved by contributing more time on the task,
learning related skills, or asking friends for help, and so on.
Naturally, exerting different levels of effort incurs different
cost to users. We describe such disutility from effort by the
cost function. Last but not least, users differ in the risk attitude,
which is defined as the degree of risk aversion [24]. Generally,
users are either risk-averse, risk-neutral, or risk-seeking [25].

We define the aforementioned characteristics as user types.
We assume there are m types. Let ni denote the number of
type-i users. Thus,

∑m
i=1 ni = n. Users of the same type

have similar characteristics. The platform knows the type of
each user and thus its characteristic information. However, the
platform can not directly know how much effort the users will
exert in performing a task.

1We eliminate users who contribute negative utilities to the platform due
to the IR property. Details can be found in Section IV and Section V.

For a user of type-i, we denote its ability by ηi, effort by
ei, and submitted data quality by qi. Then we have,

qi = ηi + ei + εi, (1)
where εi is an error due to the uncertainty in the data quality
even the user puts the same level of effort. We assume ηi and
εi are random variables following the normal distribution. In
detail, ηi ∼ N(µi, σ

2
η,i) and εi ∼ N(0, σ2

ε,i), where µi and
0 are means, and σ2

η,i and σ2
ε,i are variances. As far as we

know, this is the first time that such user model is introduced
in crowdsensing. However, in economics, it is essential and
widely used to model the worker’s output based on labor
input [26, 27].

For users of type-i, the platform will design a (q∗i , pi)
bundle, referred to as a contract item, where q∗i is the quality
that the platform expects, and pi is a payment function of data
quality. We define the payment function pi as

pi = f(qi), (2)
where f(·) is a nonnegative and nondecreasing function. Note
that here the contract item is not a simple single quality-
payment bundle, but instead an expected quality with a pay-
ment function. With the presence of the payment function, the
single contract item is essentially an infinite number of quality-
payment bundles. Users can choose different effort levels so as
to provide different data qualities and receive corresponding
payments. An optimal payment function would incentivize
users to provide data quality the same as the expected quality.
Since the user type is known to the platform, the platform

only needs to publish one contract item to each user.
The cost function for type-i users is denoted by ci(ei),

which is assumed to be increasing, convex, and differentiable,
with c′i(0) = 0, c′i(∞) = ∞, c′i > 0 and c′′i > 0. The utility
of type-i users is defined as a mean-variance utility [28]

Ui = E[ui]− riV[ui], (3)
where

ui = pi − ci(ei), (4)

and ri is the degree of risk aversion. Based on the discus-
sion in [24], mean-variance utility functions are the best to
represent utility in the economics of uncertainty.

If ri > 0, the users are risk-averse and prefer with a
more certain, but possibly lower payment. If ri = 0, the
users are risk-neutral. They are interested only in the expected
utility and indifference to risk. If ri < 0, the users are
risk-seeking and overweight high-payment but low-probability
events. Since a user can only control its effort to change its
utility, we also use Ui(ei) to denote Ui. For any user of type-i,
it will participate in the crowdsensing system only when its
utility is at least its reserved utility, denoted by ui. Then it
will choose the effort level which maximizes its utility.

Note that all the aforementioned user characteristics (ability
distribution of ηi, error distribution of εi, cost function ci(·)
and risk attitude ri) can be available to the platform by
maintaining historical records of users [18, 19].

Now we can rigorously define the IR and IC in this
model as follows: 1). A contract-based incentive mechanism
is individual-rational if

max
ei

Ui(ei) ≥ ui, (5)



for any type-i, 1 ≤ i ≤ m. 2). A contract-based incentive
mechanism is incentive-compatible if

Ui(e
∗
i ) ≥ Ui(ei), (6)

for any ei 6= e∗i for any type-i, 1 ≤ i ≤ m, where e∗i = q∗i −µi.
For any user of type-i, we define the utility gained from

this user as
UP,i = E[v(qi)− pi], (7)

where v(·) represents how the platform values the data quality
and is assumed to be nonnegative, nondecreasing and concave.

Then the utility of the platform is defined as

UP =

m∑
i=1

niUP,i. (8)

Problem Statement: Given n users of m user types with their
characteristic information in the full information model, we
aim to design an individual-rational and incentive-compatible
contract-based incentive mechanism such that the utility of the
platform is maximized.

B. Incomplete Information Model

In this model, the users’ basic characteristic information
is not known to the platform. The user type is defined as
a comprehensive descriptor of all characteristics mentioned
in the full information model. There are m user types in
this model. Each user type has only two attributes, the type
value and the default quality. For any type-i, the type value θi
describes user’s ability and willingness, and the default quality
qi is the quality of data submitted by type-i users without
exerting either insufficient or extra effort. How to determine
the type value θi is largely dependent on the sensing tasks,
and is orthogonal to our research. Practical examples can be
found in [20–22]. Without loss of generality, we assume
0 < θ1 < θ2 < · · · < θm, and 0 ≤ q1 ≤ q2 ≤ · · · ≤ qm.
Note that the types are all distinct, but the quality can be the
same. Such situation happens when two users have the same
ability but different levels of willingness to complete the task
with the same quality. Moreover, the platform no longer has
full information about users’ types but knows the user type
distribution. In detail, the probability that a user belongs to
type-i is denoted by λi. Clearly,

∑m
i=1 λi = 1.

For users of type-i, the platform specifically designs a
(qi, pi) bundle, referred to as a contract item, where qi is
the default quality for type-i users and pi is the correspond-
ing payment. Then we denote the contract as (Q,P ) =
{(qi, pi) | i ∈ {1, 2, . . . ,m}} . In this model, we assume that
once a user selects a contract item, it will stick to the choice
and perform accordingly; otherwise, it would choose another
contract item in the first place. This assumption means a user
can be dishonest about its type; but once the contract is signed,
the user will fulfill the contract.

Note that it is very likely that the platform can not perfectly
correctly verify the qualities of data since a perfect evaluation
system might be costly, if not impossible. Thus we consider
imperfect evaluation system and use πi,j to denote the prob-
ability that data quality qi is evaluated as data quality qj .

In this model, we assume all users are risk-neutral2. There-
fore, the mean-variance utility function is simplified to an
expected utility function. In detail, the utility of a type-i
user selecting contract item (qj , pj) is directly defined as the
difference between the gain from the expected payment and
the cost from performing the task with qj :

Ui,j = θi

m∑
k=1

πj,kpk − βqj , (9)

where β is a fixed parameter to convert the value of data
quality to the cost of the user. For simplicity, we assume β = 1
in this paper. Even if β is not 1 in practice, we can set it to be
1 by scaling type values. Note that instead of directly using
the expected payment as the reward, we use the production
of the type value and the expected payment. This is because
for a user of higher type value, it takes less effort to complete
the task with the same quality, physically and/or mentally. For
example, considering two users submitting data of the same
quality, the user of higher type may be happier and/or use
less energy to finish the task, thus the overall utility should
be larger. For any user, it will participate in the crowdsensing
system only when it can achieve at least its reserved utility u,
which is the same for all user types.

Now we can rigorously define the IR and IC in the in-
complete information model as follows: 1). A contract-based
incentive mechanism is individual-rational if

max
1≤j≤m

Ui,j ≥ u, (10)

for any type-i, 1 ≤ i ≤ m. 2). A contract-based incentive
mechanism is incentive-compatible if

Ui,i ≥ Ui,j , (11)

for any type-i and type-j, 1 ≤ i, j ≤ m, i 6= j.
Finally, the utility of the platform is defined as the difference

between the value of data qualities and the payments to users,

UP =

m∑
i=1

ni(v(qi)−
m∑
k=1

πi,kpk), (12)

where ni is the number of users selecting contract item (qi, pi),
v(·) is valuation function of data quality, and

∑m
k=1 πi,kpi is

the expected payment to a user submitting data of quality qi.

Problem Statement: Given n users, and user type distribution
of m types, λ1, λ2, . . . , λm, in the incomplete information
model, we aim to design an individual-rational and incentive-
compatible contract-based incentive mechanism such that the
utility of the platform is maximized.

IV. QUAC-F: CONTRACT-BASED INCENTIVE MECHANISM
FOR FULL INFORMATION MODEL

In this section, we design an efficient contract-based incen-
tive mechanism which maximizes the utility of the platform.

2We plan to eliminate this assumption in future work.



A. Design Rationale
Note that the design of contract-based incentive mechanism

for the full information model can be formulated as a Stack-
elberg game. In this game, the platform is the leader and the
users are followers. The strategy of the platform is to set the
expected quality q∗i and the payment function pi = f(qi) in
each contract item. The strategy of each user is to decide the
data quality by exerting different levels of effort. Both the
platform and the users are interested in maximizing their own
utilities. Following the convention of analyzing Stackelberg
games, we use backward induction to design the mechanism.

B. Design of QUAC-F

The general steps to design the contract for each type-i is:
1) Given any payment function f(·), calculate the optimal

effort level e∗i for each user by solving the first order con-
dition of its mean-variance utility (3): e∗i = e |dUi/de=0 .

2) Plug e∗i in the first order condition of the platform’s
utility (7), and then solve it to calculate the optimal
parameters of f(·).

3) Repeat the previous two steps for different types of
f(·) and choose the one that maximizes the platform’s
utility (7).

4) Calculate the expected quality q∗i based on the effort level
e∗i that maximizes type-i users’ utilities under the chosen
payment function.

To illustrate how QUAC-F works, we use f(qi) = ai+ biqi
and v(qi) = αqi as an example.

Calculation of Optimal Effort: Since users of different types
are independent of each other, we consider each user type
individually.

By (1), (2), and (4), we obtain
ui = ai + biηi + biei − ci(ei) + bi(ηi + εi).

Thus we have,
E[ui] = ai + biµi + biei − ci(ei),

and
V[ui] = b2i (σ

2
η,i + σ2

ε,i).

Then the utility of a type-i user is
Ui = ai + biei + biµi − ci(ei)− rib2i (σ2

η,i + σ2
ε,i). (13)

Note that Ui is concave since the cost function ci is convex.
Then the first order condition for maximizing Ui gives us

bi − c′i(ei) = 0. (14)
Therefore, the utility of a type-i user is maximized when

ei = ẽi(bi), (15)
where ẽi represents the inverse function of the first derivative
of the cost function for type-i users, i.e., ẽi(·) = (c′i)

−1(·).
This guarantees the IC property.

To further analyze how the choice of bi affects users’
actions, we differentiate (14) with respect to bi and obtain

1− c′′i (ẽi(bi))
dẽi(bi)

dbi
= 0.

Therefore,
dẽi(bi)

dbi
> 0, (16)

which suggests that the platform can induce greater effort
from users by increasing the share of quality in the payment
function.

Calculation of Optimal Payment Function: Now we know
how users will act given any contract. We continue to use
backward reduction to analyze the utility of the platform.
Since users of different types are independent from each
other, maximizing platform’s total utility (8) is equivalent to
maximizing the utility (7) for each individual user type.

Combining (1) and (7), we get

UP,i = α(µi + ei)− E[pi]. (17)

Note that to achieve the maximum utility, the platform will
always set the value of ai to make (5) just bind and thus
guarantee the IR property. Then we have

Ui = E[pi]− ci(ei)− rib2i (σ2
η,i + σ2

ε,i) = ui.

Moving terms, we get

E[pi] = ui + ci(ei) + rib
2
i (σ

2
η,i + σ2

ε,i). (18)

Combining (17) and (18), we obtain

UP,i = α(µi + ei)− ui − ci(ei)− rib2i (σ2
η,i + σ2

ε,i). (19)

The first-order condition for maximizing (19) is

(α− c′i(ẽi(bi)))
dẽi(bi)

dbi
− 2ribi(σ

2
η,i + σ2

ε,i) = 0. (20)

The optimal value of bi is the solution to (20), denoted by
b∗i . Based on (15), the optimal effort for a type-i user is e∗i =
ẽi(b

∗
i ). Since maxei Ui(ei) = Ui(e

∗
i ) = ui, the optimal value

of ai is a∗i = ui − b∗i e∗i − b∗iµi + ci(e
∗
i ) + ri(b

∗
i )

2(σ2
η,i + σ2

ε,i)
based on (13). As the other component in each contract item,
the expected quality is set to be p∗i = E[pi] = e∗i + µi.

Remark: Note that, for any type-i, if there is no solution to (20)
or the corresponding utility of the platform UP,i is negative,
then we will remove type-i users from consideration.

Impact of Risk Attitude on Users’ Efforts: From (20), we can
observe that b∗i is based on the risk attitude ri.

In order to analyze the impact of risk attitude on users’
efforts, we first introduce social welfare, which is defined as
the total utility of both the platform and the users, i.e.,

W =

m∑
i=1

niUi + UP =

m∑
i=1

ni(Ui + UP,i).

Let Wi be the social welfare contributed by each type-i user,
i.e., Wi = Ui + UP,i. By (4) and (7) , we have

Wi = αµi + αei − ci(ei).
Since c′i > 0 and c′′i > 0, the first order condition for
maximizing Wi is α = c′i(ei). Define the social optimal effort
for type-i users, denoted by eopti , as the effort that maximizes
Wi. Then, eopti = ẽi(α). For any type-i, by inducing all type-i
users to contribute effort eopti , the social welfare is maximized.
However, not all optimal contracts can induce the users to
choose their social optimal efforts. In fact, from (16) and (20),
we have the following conclusions:

1) For risk-averse users (ri > 0), (20) holds only if α −
c′i(ẽi(b

∗
i )) > 0. Therefore, b∗i < α, and the platform can

only induce the users to contribute efforts lower than eopti .



2) For risk-neutral users (ri = 0), (20) holds only if
α− c′i(ẽi(b∗i )) = 0. Therefore, b∗i = α, and the platform
induce the users to choose their social optimal efforts.
Moreover, since α is the same for all user types, b∗i would
be the same as well.

3) For risk-seeking users (ri < 0), (20) holds only if α −
c′i(ẽi(b

∗
i )) < 0. Therefore, b∗i > α, and the platform can

only induce the users to exert efforts higher than eopti .

Remark: Note that we can infer users’ risk attitudes based on
the history of their choices of efforts.

Complexity Analysis: Let ` denote the number of different
types of payment function f(·). For a certain function type, the
time complexity to get its optimal parameters is O(m). Thus
the total time to find the optimal contract overall is O(`m).

V. QUAC-I: CONTRACT-BASED INCENTIVE MECHANISM
FOR INCOMPLETE INFORMATION MODEL

In this section, we design an efficient contract-based incen-
tive mechanism which maximizes the utility of the platform
for the incomplete information model.

A. Design Rationale

We formulate the design of contract-based incentive mecha-
nism for the incomplete information model as an optimization
problem with constraints so that both IR and IC properties
are satisfied. To improve the time complexity of computing
the optimal solution, we reduce the number of constraints
and obtain an equivalent optimization problem based on the
inherent properties of the problem.

B. Design of QUAC-I

Optimization Problem Formulation: We first provide the con-
straints for designing an individual-rational and incentive-
compatible mechanism. Based on the IC property, we must
have max1≤j≤m Ui,j = Ui,i for any type-i. Then based on (9)
and (10), we use the following constraints, referred to as IR
constraints, to guarantee the IR property,

θi

m∑
k=1

πi,kpk − qi ≥ u, 1 ≤ i ≤ m. (21)

Based on (9) and (11), we use the following constraints,
referred to as IC constraints, to guarantee the IC property,

θi

m∑
k=1

πi,kpk−qi ≥ θi
m∑
k=1

πj,kpk−qj , 1 ≤ i 6= j ≤ m. (22)

Note that the actual number of users choosing each contract
item is unknown to the platform a priori. It is impossible to di-
rectly maximize (12) when designing the contract. Therefore,
we use the expected value of UP as the objective function. In
other words, the objective function is

E[UP ] =
m∑
i=1

nλi

(
v(qi)−

m∑
k=1

πi,kpk

)
.

Since n is invariant, it can be omitted in the above objective
function. Now we can formulate the mechanism design prob-
lem for the incomplete information model as an optimization
problem below:

max
(P,Q)

m∑
i=1

λi

(
v(qi)−

m∑
k=1

πi,kpk

)
, subject to (21) and (22).

Note that this optimization problem has m+m(m−1) = m2

constraints in total.

Constraints Reduction: Next, we reduce the number of con-
straints and obtain an equivalent problem as follows.

1) Reducing IR constraints: By IC constraints and the
relation of user types (θi > θ1), we have,

θi

m∑
k=1

πi,kpk − qi ≥ θi
m∑
k=1

π1,kpk − q1 ≥ θ1
m∑
k=1

π1,kpk − q1.

Therefore, all m IR constraints reduce to only one constraint:

θ1

m∑
k=1

π1,kpk − q1 ≥ u. (23)

2) Reducing IC constraints: We first introduce the follow-
ing lemma to reduce IC constraints.

Lemma 1: For any contract-based incentive mechanism
satisfying both IR and IC properties, we have

∑m
k=1 πi,kpk ≥∑m

k=1 πj,kpk, if i > j.
Proof: By IC constraints, we have θi

∑m
k=1 πi,kpk −

qi ≥ θi
∑m
k=1 πj,kpk − qj and θj

∑m
k=1 πj,kpk − qj ≥

θj
∑m
k=1 πi,kpk − qi. Adding these two inequalities, we get(

m∑
k=1

πi,kpk −
m∑
k=1

πj,kpk

)
(θi − θj) ≤ 0.

If i > j, then θi > θj . Thus we have
∑m
k=1 πi,kpk −∑m

k=1 πj,kpk ≥ 0.
Among all IC constraints, there are some with certain

special formats. We call the constraints on Ui,i and Ui,j ,
where j < i, downward incentive constraints (DICs). Par-
ticularly, the constraints on Ui,i and Ui,i−1 are called local
downward incentive constraints (LDICs). Similarly, we call the
constraints on Ui,i and Ui,j , where j > i, upward incentive
constraints (UICs), and constraints on Ui,i and Ui,i+1 local
upward incentive constraints (LDICs). Note that DICs include
LDICs and that UICs include LUICs.

Now we show that all LDICs are sufficient to represent all
DICs. By the LDIC on Ui,i and Ui,i−1, we have

θi

m∑
k=1

πi,kpk − qi ≥ θi
m∑
k=1

πi−1,kpk − qi−1. (24)

By Lemma 1 and θi+1 > θi > 0, we get

θi+1

(
m∑
k=1

πi,kpk −
m∑
k=1

πi−1,kpk

)

≥ θi

(
m∑
k=1

πi,kpk −
m∑
k=1

πi−1,kpk

)
≥ qi − qi−1,

where the second inequality is due to (24). Thus,

θi+1

m∑
k=1

πi,kpk − qi ≥ θi+1

m∑
k=1

πi−1,kpk − qi−1.



Together with the LDIC on Ui+1,i+1 and Ui+1,i, which is

θi+1

m∑
k=1

πi+1,kpk − qi+1 ≥ θi+1

m∑
k=1

πi,kpk − qi,

we have

θi+1

m∑
k=1

πi+1,kpk − qi+1 ≥ θi+1

m∑
k=1

πi−1,kpk − qi−1.

Therefore, we have shown that if the LDICs on Ui+1,i+1 and
Ui+1,i hold, then the DICs on Ui+1,i+1 and Ui+1,i−1 hold. By
extending the above process, we can prove that if all LDICs
hold, then all DICs hold.

Next, we show that all LUICs are sufficient to represent all
UICs. By the LUIC on Ui,i and Ui,i+1, we have

θi

m∑
k=1

πi,kpk − qi ≥ θi
m∑
k=1

πi+1,kpk − qi+1.

Moving terms, we get

qi+1 − qi ≥ θi

(
m∑
k=1

πi+1,kpk −
m∑
k=1

πi,kpk

)

≥ θi−1

(
m∑
k=1

πi+1,kpk −
m∑
k=1

πi,kpk

)
, (25)

where the second inequality is due to Lemma 1 and the fact
that θi > θi−1. By the LUIC on Ui−1,i−1 and Ui−1,i, we have

θi−1

m∑
k=1

πi−1,kpk − qi−1 ≥ θi−1
m∑
k=1

πi,kpk − qi

≥ θi−1
m∑
k=1

πi+1,kpk − qi+1,

where the second inequality is due to (25). Thus, we have
shown that if the LUICs on Ui−1,i−1 and Ui−1,i hold, then the
DICs on Ui−i,i−1 and Ui−1,i+1 hold. By extending the above
process, we prove if all LUICs hold, then all UICs hold.

There are m − 1 LDICs and m − 1 LUICs in total. In
addition, all LDICs can represent all DICs, and all LUICs can
represent all UICs. Thus we have successfully reduced m2−m
IC constraints to 2m− 2 constraints.

However, during the deduction, we have used Lemma 1
which is based on the original ICs. Thus, we need to make
sure the lemma is still valid after the reduction. In fact, by the
LDICs θi

∑m
k=1 πi,kpk − qi ≥ θi

∑m
k=1 πi−1,kpk − qi−1 and

the fact qi ≥ qi−1, we have

θi

(
m∑
k=1

πi,kpk −
m∑
k=1

πi−1,kpk

)
≥ qi − qi−1 ≥ 0.

Together with θi > 0, we get
m∑
k=1

πm,kpk ≥
m∑
k=1

πm−1,kpk ≥ · · · ≥
m∑
k=1

π1,kpk.

Lemma 1 holds as long as LDICs hold.
Simplified Optimization Problem Formulation: Now, the origi-
nal optimization problem is simplified to the following equiva-
lent convex optimization problem which can be solved through
interior-point methods [29]:

max
(P,Q)

m∑
i=1

λi

(
v(qi)−

m∑
k=1

πi,kpk

)
,

subject to θ1

m∑
k=1

π1,kpk − q1 ≥ u;

θi

m∑
k=1

πi,kpk − qi ≥ θi
m∑
k=1

πi+1,kpk − qi+1, 1 ≤ i ≤ m−1;

θi+1

m∑
k=1

πi+1,kpk − qi+1 ≥ θi+1

m∑
k=1

πi,kpk − qi, 1 ≤ i ≤ m−1.

Remark: Note that, if the optimal contract results in a negative
UP , then we will remove users starting from the lowest type
since the quality they can provide is the lowest.

Complexity Analysis: The time complexity of QUAC-I is
largely based on v(·). For any v(·) that makes the simplified
optimization problem become linear programming, quadratic
programming, or quadratically constrained quadratic program-
ming, the time complexity can be bound by O(

√
m) [29].

VI. PERFORMANCE EVALUATION

A. Dataset and Evaluation Setup

To evaluate the performance of QUAC-F and QUAC-I, we
used the dataset from [30], which is derived from a real
dataset [31] to provide the outdoor temperature of areas in
Rome collected by 289 taxicabs over 4 days.

In our evaluation, we define the value of quality of sensing
data as the submission rate of each taxicab, i.e., how much
temperature data submitted to the server per day. Based on
the means of qualities, we classify users into 10 different
types through k-means clustering method [32] and record the
variance and the probability of each type. Other characteristics
are generated randomly since the raw dataset does not contain
those information. The characteristic information of each user
type is shown in Table I and the type distribution is shown
in Fig. 2. The value shown on the pie chart is the probability
that a user belongs to each type. For simplicity, we set the
reserved utilities for all users to be ui = u = 5. The valuation
function of the platform is set to be v(qi) = 6qi, which means
the platform is willing to pay 6 cents for each temperature
value submitted to the server per day. According to [33], 90%
tasks on Amazon Mechanical Turk pay less than 10 cents.

For the full information model, we set the cost function of
each user to be ci(e) = e2, which is also used in [34]. Note
that here we assume the cost function is the same for any user
type for simplicity. We set n = 1500 in the evaluation.

For the incomplete information model, the mean µi of the
ability of each user type in the full information model is used
as the default quality qi. We set the evaluation probability

πi,j =


0.02, if j = i− 1 or j = i+ 1,

0.96, if j = i,

0, otherwise.

We vary the number of users n from 300 to 1500 in this model.
The performance metrics used in our evaluation are: data

quality, user effort, user utility, and platform utility.

B. Evaluation of QUAC-F

Table II shows the optimal contract designed by QUAC-F.



i 1 2 3 4 5 6 7 8 9 10

µi 1.08 2.08 2.60 3.21 3.99 4.77 5.58 6.62 7.82 9.64
ση,i 0.19 0.03 0.02 0.04 0.04 0.03 0.08 0.09 0.15 1.61
σε,i 0.07 0.06 0.04 0.09 0.01 0.10 0.04 0.05 0.08 0.09
ri 0.05 -0.35 0.84 -0.10 0.02 0.04 0.32 0.27 0.18 0.00

TABLE I: Characteristics of each user type

Type-1: 11%

Type-2: 13%

Type-3: 9%

Type-4: 11%

Type-5: 8% Type-6: 12%

Type-7: 13%

Type-8: 10%

Type-9: 9%

Type-10: 4%

Fig. 2: User type distribution

i 1 2 3 4 5 6 7 8 9 10

q∗i 3.94 5.49 5.11 6.38 6.98 7.71 8.18 9.23 10.39 12.72
a∗i -8.98 -22.17 -13.08 -26.01 -27.70 -31.49 -29.68 -35.36 -40.67 -64.19
b∗i 5.72 6.81 5.01 6.35 5.97 5.88 5.19 5.22 5.14 6.17

TABLE II: Contract designed by QUAC-F

1 2 3 4 5 6 7 8 9 10
User type
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Fig. 3: User effort of each user type
under different risk attitudes
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Fig. 4: Data quality for each user type
with/without the incentive mechanism
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Fig. 5: Platform utility of each individual
user type

i 1 2 3 4 5 6 7 8 9 10

qi 1.08 2.08 2.60 3.21 3.99 4.77 5.58 6.62 7.82 9.64
p∗i 14.51 16.49 17.03 17.94 19.00 19.98 20.92 22.07 23.31 25.72

TABLE III: Contract designed by QUAC-I

Type-4 user Type-7 user
User type
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Fig. 6: Utility of user when choosing
different contract items
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Fig. 7: Utility of each user type under
different contracts
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Fig. 8: Utility of the platform under
different contracts

Fig. 3 shows how the risk attitude affects each user’s
choice of effort. We manually set the risk attitude to be risk-
neutral (ri = 0.0), risk-averse (ri = 0.05), or risk-seeking
(ri = −0.05) while keeping other user characteristics the
same. It is obvious that users are induced to exert the highest
level of effort when they are risk-seeking and the lowest level
of effort when they are risk-averse. Moreover, if users of any
type are risk-neutral, they are induced to input the same level
of effort regardless of their types. This is consistent with the
conclusions discussed in Section IV-B. Note that for type-
10 users, the effort is much different among different risk
attitudes, due to the relatively high variance of user abilities.

Fig. 4 shows the expected data quality provided by each
user type with and without QUAC-F. The improvement of
the qualities indicates that QUAC-F is effective to stimulate
higher quality data. We can observe that the increase in the
data quality of user type-2 and user type-4 are higher than
those of other types. This is because, according to Table I,

type-2 and type-4 users are risk-seeking and thus are willing
to exert higher effort.

Fig. 5 plots the platform utility per user type UP,i. As
expected, UP,i is higher when a user has a higher ability except
for type-2 users. This is because these users are incentivized
to exert higher effort than type-3 users as shown in Fig. 4.

C. Evaluation of QUAC-I
Table III shows the optimal contract designed by QUAC-I.
Fig. 6 shows the utility of a type-4 user and a type-7

user when they choose different contract items. Both users
achieve the highest utility when they choose the contract items
designed for their types. This verifies that the optimal contract
designed by QUAC-I is incentive compatible since no user has
an incentive to deviate from its corresponding contract item.

Fig. 7 plots the impact of IR and IC properties on the utility
of each user type, Ui,i. In particular, NO-IR denotes QUAC-I
without considering IR property, and NO-IC denotes QUAC-I
without considering IC property. When IR is not considered,



the platform will set very low payments so as to maximize its
utility. Therefore, the users would have negative utilities since
the payments are lower than their costs. Without IC property,
Ui,i under NO-IC is always the reserved utility no matter what
type the user is. We also observe that U1,1 = u under QUAC-I.
The reason is that the IR constraint for type-1 users must bind
in the optimal solution.

Fig. 8 shows the impact of n on the platform utility, UP ,
under the above three mechanisms. Without IR, users would
have utilities less than u if they accept contracts, and thus
they would reject all contracts. Therefore, the platform utility
is always zero. Without IC property, the platform utility under
NO-IC is lower than that under QUAC-I since the all uses will
tend to choose the contract item 1 since they can achieve the
same utilities with the lowest quality. However, such quality
has the least contribution to the platform.
Remark: We have shown how QUAC-F and QUAC-I incen-
tivize taxi drivers to increase their submission rates. Our
mechanisms can also be applied to any crowdsensing systems
as long as the quality of the sensing tasks can be quanti-
fied and the users’ mathematical model can be established.
Such quantification and formulation is largely dependent of
the crowdsensing system and is orthogonal to our research.
Fortunately, existing works [35] may help to shed light upon
those researches.

VII. CONCLUSION

In this paper, we studied the design of quality-aware
contract-based incentive mechanisms for crowdsensing. Based
on different levels of the platform’s knowledge on users’ infor-
mation, we introduced two models, the full information model
and the incomplete information model. In the full information
model, the platform knows the basic characteristics (e.g. ability
distribution, cost function, risk attitude, etc) of users but
does not know their action (how much effort to contribute).
Moreover, we considered the uncertainty in the intended
qualities of users’ submitted sensing data with their efforts.
In the incomplete information model, however, the platform
only knows the distribution of users’ general characteristics
(type value and default quality). We also considered imperfect
quality evaluation system in this model. For both models,
we design quality-aware contract-based incentive mechanisms
named QUAC-F and QUAC-I respectively, which are guaran-
teed to be individual-rational and incentive-compatible while
maximizing the platform utility. We also plan to test the
effectiveness of our mechanisms by implementing them on
crowdsensing platforms such as Amazon Mechanical Turk.
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