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Abstract—Crowdsensing leverages the rapid growth of sensor-
embedded smartphones and human mobility for pervasive infor-
mation collection. To incentivize smartphone users to participate
in crowdsensing, many auction-based incentive mechanisms have
been proposed for both offline and online scenarios. It has
been demonstrated that the Sybil attack may undermine these
mechanisms. In a Sybil attack, a user illegitimately pretends
multiple identities to gain benefits. Sybil-proof incentive mecha-
nisms have been proposed for the offline scenario. However, the
problem of designing Sybil-proof online incentive mechanisms for
crowdsensing is still open. Compared to the offline scenario, the
online scenario provides users one more dimension of flexibility,
i.e., active time, to conduct Sybil attacks, which makes this
problem more challenging. In this paper, we design Sybil-
proof online incentive mechanisms to deter the Sybil attack for
crowdsensing. Depending on users’ flexibility on performing their
tasks, we investigate both single-minded and multi-minded cases
and propose SOS and SOM, respectively. SOS achieves compu-
tational efficiency, individual rationality, truthfulness, and Sybil-
proofness. SOM achieves individual rationality, truthfulness, and
Sybil-proofness. Through extensive simulations, we evaluate the
performance of SOS and SOM.

I. INTRODUCTION

In recent years, the rapid proliferation of smartphones with
rich embedded sensors has attracted great attentions from both
academy and industry [7]. The effectiveness of crowdsensing
to collect data enabled numerous crowdsensing applications in
a wide variety of domains, such as transportation [28], mar-
keting [6], environmental monitoring [22], cellular coverage
map [19], and etc.

The number of participating users is a critical factor for
the success of a crowdsensing application. Most of the early
systems [18, 22] assume that the smartphone users contribute
to the platform voluntarily. In practice, however, smartphone
users taking part in crowdsensing cause extra cost while
performing the sensing tasks, e.g., sensing time, battery expen-
diture, transmission expense and potential privacy threats from
the exposure of their locations. Therefore, it is necessary to
design incentive mechanisms to stimulate users to participate
in crowdsensing.
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Fig. 1. Online crowdsensing system

At present, a number of auction-based incentive mecha-
nisms have been proposed for crowdsensing. These incentive
mechanisms model the interaction between the crowdsensing
platform and the smartphone users as a reverse auction. The
buyer is the platform, and the sellers are smartphone users
who bid to perform sensing tasks. In these mechanisms, the
platform selects users according to their submitted bids. Most
of existing incentive mechanisms (e.g., [10, 15, 31, 32, 36]) fo-
cus on offline scenario in which smartphone users are required
to submit their bids at the beginning of the auction, and the
platform selects a subset of users according to some criteria for
different objectives, e.g, maximize social welfare and platform
utility. Some works (e.g., [4, 5, 8, 9, 27, 37, 39, 40, 40])
consider a more practical yet dynamic online scenario in which
smartphone users participate in the system in a random order,
as shown in Fig. 1. Once a user arrives, the platform has to
make irrevocable decisions on whether to select it and how
much it should be paid without knowing future information.
However, none of above mechanisms take into consideration
the Sybil attack [2], also known as false-name attack [34].
In recent years, the potential threat from Sybil attack has
been investigated in various areas, such as cloud resource
allocation [26], social networks [23, 24], and crowdsourced
mobile apps [25]. These works focus on designing detection
methods to eliminate Sybil attackers. The impact of Sybil
attack in auctions has been analyzed in [33, 34].

In both offline and online crowdsensing systems, a user may
submit multiple bids under different fictitious identities in the
hope to increase its utility. This attack is easy to conduct
(e.g., creating multiple accounts) but difficult to detect. The
vulnerability to Sybil attack may make a mechanism fail to
achieve its desired properties, and the fairness of the system
will be jeopardized, since the increase of an attacker’s utility
may decrease other users’ utility.

Lin et al. [16] are the first to investigate the Sybil attack
in crowdsensing. They proposed two Sybil-proof incentive
mechanisms in the offline scenario. However, their mecha-
nisms cannot be directly applied to the online scenario, since

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 2438



the online scenario provides users one more dimension of
flexibility to conduct Sybil attacks, i.e., active time window (to
be elaborated latter). Existing online incentive mechanisms for
crowdsensing [4, 5, 9, 27, 37–39] are all vulnerable to Sybil
attack. Among them, the VCG-based incentive mechanism [5]
is not Sybil-proof, since the VCG auction has been proved
not Sybil-proof in [34]. The mechanism proposed in [4] is
not Sybil-proof, since a user can increase its critical value
and thus increase its payment by submitting multiple bids. For
mechanisms in [9, 30, 37, 38], a user can increase its utility by
changing from a loser to a winner via Sybil attack. We will use
examples to demonstrate the vulnerability of existing online
mechanisms to Sybil attack in Section IV. Therefore, the
problem of designing Sybil-proof online incentive mechanisms
for crowdsensing remains open.

In this paper, we focus on designing Sybil-proof online in-
centive mechanisms for crowdsensing. A mechanism is Sybil-
proof if, participating in crowdsensing using a single identity
is a dominant strategy of each user. The main contributions of
this paper are as follows:

• To the best of our knowledge, we are the first to inves-
tigate Sybil attack in online incentive mechanisms for
crowdsensing.

• We analyze existing online incentive mechanisms and
demonstrate that they are all vulnerable to Sybil attack.

• Depending on users’ flexibility on performing their tasks,
we consider both the single-minded and multi-minded
cases. We design SOS and SOM for these two cases, re-
spectively. In order to design SOS, we provide a sufficient
condition for an online mechanism to be Sybil-proof.
We prove that SOS achieves computational efficiency,
individual rationality, truthfulness, and Sybil-proofness,
and that SOM achieves individual rationality, truthfulness,
and Sybil-proofness.

The remainder of this paper is organized as follows. In
Section II, we review the related work. In Section III, we
introduce the system model and the objectives. In Section IV,
we analyze the vulnerability of existing online mechanisms
to Sybil attack. In Section V and Section VI, we present
two online mechanisms for single-minded case and multi-
minded case and prove their desired properties, respectively.
Performance evaluations are presented in Section VII. We
conclude this paper in Section VIII.

II. RELATED WORK

In recent years, a number of auction-based incentive mecha-
nisms have been proposed for crowdsensing. Most of them are
offline mechanisms with different objectives e.g., maximizing
the utility of the platform under a budget constraint [35],
minimizing the social cost [3, 30], and preserving users’
privacy [12, 14, 17]. The quality of sensing data has been
considered in [11, 13, 20, 29]. Lin et al. [16] formalized the
Sybil attack in crowdsensing and demonstrated that previous
offline mechanisms are all vulnerable to Sybil attack. Two
Sybil-proof offline incentive mechanisms are prosed in this

paper, i.e., SPIM-S and SPIM-M. However, these two mech-
anisms cannot be directly applied to the online scenario.

Several works considered the online scenario where smart-
phone users come to the system in a random order. Among
them, some online pricing mechanisms have been analyzed
in [8, 40]. In addition, a number of auction-based online incen-
tive mechanisms have been proposed for crowdsensing. Most
of them aim to design online mechanisms, which have compa-
rable performance to offline mechanisms. To get the informa-
tion about upcoming users, two-sage based mechanisms have
been proposed in [9, 37]. However, these mechanisms cannot
guarantee the consumer sovereignty, since the first batch of
users are rejected no matter how they bid. Zhao et al. [38, 39]
proposed two multi-stage mechanisms, which satisfy consumer
sovereignty. Furthermore, Gao et al. [5] proposed a VCG-
based mechanism to invitivize users to participate in the
system for a long-term. Feng et al. [4] considered a system
with dynamic users and dynamic tasks. The users’ privacy
has been considered in [27]. However, none of existing online
mechanisms take into consideration the Sybil attack.

Recently, the impact of Sybil attack has been widely
analyzed in areas including virtual machine instance allo-
cation [26], social networks [23] and crowdsourced mobile
apps [25]. As pioneers, Yokoo et al. [34] analyzed the effects
of Sybil attack on combinatorial auctions. They proved that
VCG auction is not Sybil-proof in this paper. In addition,
the price-oriented rationing-free protocols, which characterize
the Sybil-proof protocols for combinatorial auction have been
proposed in [33].

The problem of designing Sybil-proof online incentive
mechanisms for crowdsensing is still open. All existing on-
line incentive mechanisms are vulnerable to Sybil attack as
explained in Section I, and we will show their vulnerabilities
to Sybil attack in Section IV.

III. MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a crowdsensing system con-
sisting of a platform and a crowd of smartphone users
U = {1, 2, . . . , n}, where n is unknown. The platform first
publicizes a set T = {τ1, τ2, . . . , τm} of m sensing tasks,
aiming at finding some users to complete these tasks before
a specified deadline T , which is divided into slots of equal
size. Each task τi ∈ T has a value vi to the platform. We
use bundle to refer to any subset of T . There is a function
V (B) to calculate the value of bundle B to the platform, i.e.,
V (B) =

∑
τi∈B vi,B ⊆ T . Each user i has a active time

window within which it promises to complete the tasks if it is
assigned, and a task set Γ̃i ⊆ T , which i can complete within
its active time window. Let ãi ∈ {1, . . . , T} denote the begin
of active time window and d̃i ∈ {1, . . . , T}, d̃i ≥ ãi denote the
end of active time window. Note that the platform has to make
decision to each user i by d̃i. As with [16], we assume that
each user i has a cost function c̃i(B), which determines the
cost for i to perform all tasks in bundle B. The cost function
c̃i(·) satisfies the following properties:
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• c̃i(∅) = 0;
• c̃i({τj}) =∞,∀τj ∈ T \ Γ̃i;
• c̃i(B′) ≤ c̃i(B′′),∀B′ ⊆ B′′ ⊆ T ;
• c̃i(B) ≤ c̃i(B′) + c̃i(B′′),∀B′,B′′ ⊆ T and B = B′ ∪ B′′.

The first two properties depict user’s capability. The third
property implies that a user may incur more cost by performing
more tasks. The last property means that a user’s cost of
performing a set of tasks is not greater than that of performing
these tasks separately. These four properties together closely
characterize a user’s cost when participating in crowdsensing.

Depending on users’ flexibility on performing their task
sets, we consider two cases in this paper: single-minded (SM)
and multi-minded (MM). For the SM case, each user i ∈ U
is willing to perform only Γ̃i and behaves in a “win all or
nothing” manner. For the MM case, each user i ∈ U is willing
to perform any subset of Γ̃i and behaves in a flexible manner.

We use the sealed-bid reverse auction to model the inter-
action between the platform and the smartphone users. In our
model, the buyer is the platform buying sensing services, and
the sellers are smartphone users bidding for performing tasks.
User i is a winner if it is assigned tasks, and a loser otherwise.
Let βi = (ai, di,Γi, bi) denote the bid of user i. Similar to
most online crowdsensing systems [4, 39], we assume that a
user cannot announce an earlier arrival or a later departure,
i.e., ãi ≤ ai ≤ di ≤ d̃i. A user is active at time slot t if
ai ≤ t ≤ di. Note that, bi is a value in the SM case, while bi
is a cost function in the MM case. We call user i’s bid βi is true
if βi = (ãi, d̃i, Γ̃i, c̃(Γ̃i)) in the SM case; βi = (ãi, d̃i, Γ̃i, c̃(·))
in the MM case. At each time slot t, each newly arriving user
i, i.e., ai = t submits its bid to the platform, which is not
necessarily to be true. Given the bids of all active users at
any time slot t, the platform will assign each active user i a
bundle Ati ⊆ Γ̃i to complete. Note that Ati = ∅ means user i
is not assigned any task to perform at time t. In addition, the
platform calculates the payment pti to user i for time slot t.
Let At and pt denote the assignment profile and the payment
profile of all active users at time slot t, respectively. Besides,
let Ai =

⋃
t∈[ai,di]

Ati and pi =
∑di
t=ai

pti denote the overall
assignment and overall payment to user i, respectively. At last,
let A = (A1, . . .AT ) denote the overall assignment profile,
and p = (p1, . . . pT ) denote the overall payment profile. The
platform pays users once it receives the results of assigned
tasks. Note that pi = 0, if Ai = ∅ or user i fails to perform
assigned tasks. The utility of i in SM case is

ũi =

{
pi − c̃i(Ai), if Ai = Γ̃i;
0, otherwise.

(1)

The utility of i in MM case is

ũi =

{
pi − c̃i(Ai), if Ai ⊆ Γ̃i;
0, otherwise.

(2)

The utility of the platform is

u0 = V (
⋃
i∈U
Ai)−

∑
i∈U

pi. (3)

B. Attack Model

In this paper, we assume that all users are selfish but
rational. Hence it is possible that user i submits a false bid to
maximizes its utility. Specifically, a false bid may have a false
active time window, i.e., ai 6= ãi or di 6= d̃i. In addition, bi
may not be true, i.e., bi 6= c̃i(Γ̃i) in the SM case; bi 6= c̃i(·)
in the MM case. Furthermore, user i could also misreport its
task set i.e., Γi 6= Γ̃i.

We also assume that an attacker could conduct Sybil attack
at any time slot in its active time by submitting multiple bids
under fictitious identities. As a simple case, attacker i could
submit two bids under two identities i′ and i′′, respectively.
Note that i could submit these two bids simultaneously or at
different time slots in its active time window. This case is
sufficient to represent the general Sybil attack. We extend the
definition of attacker’s utility in the following two cases.

Single-Minded Case: Each attacker i is only willing to
perform Γ̃i. Attacker i submits βi′ = (ai′ , di′ ,Γi′ , bi′) and
βi′′ = (ai′′ , di′′ ,Γi′′ , bi′′) within [ãi, d̃i] using identities i′ and
i′′, respectively, where Γi′ ∪ Γi′′ = Γ̃i. Attacker i’s utility is

ui =

{
pi′ + pi′′ − c̃i(Γ̃i), if Ai′ ∪ Ai′′ = Γ̃i;
0, otherwise.

(4)

Multi-Minded Case: Each attacker is willing to perform any
subset of its task set. Attacker i submits βi′ = (ai′ , di′ ,Γi′ , bi′)
and βi′′ = (ai′′ , di′′ ,Γi′′ , bi′′) within [ãi, d̃i] using identities i′

and i′′, respectively, where Γi′ ⊆ Γ̃i and Γi′′ ⊆ Γ̃i. Attacker
i’s utility is

ui =

{
pi′ + pi′′ − c̃i(Ai′ ∪ Ai′′), if Ai′ ∪ Ai′′ ⊆ Γ̃i;
0, otherwise.

(5)

It is obvious that attacker i has an incentive to conduct
Sybil attack if ui > ũi in either case. We will use examples to
show the vulnerability of existing online incentive mechanisms
to Sybil attack in Section IV. Note that any user can be an
attacher, we use attacker and user interchangeably in the rest
of this paper.

C. Desired Properties and Objective

In this paper, we consider the following properties:

• Computational Efficiency: A mechanism is computaion-
ally efficient if it terminates in polynomial time.

• Individual Rationality: A mechanism is individually ra-
tional if each user has a non-negative utility when bidding
its true bid.

• Truthfulness: A mechanism is truthful if any user’s utility
is maximized when bidding its true bid including both true
active time window and true cost.

• Sybil-Proofness: A mechanism is Sybil-proof if any user’s
utility is maximized when bidding its bid using a single
identity.

The objective of this paper is to design Sybil-proof online
incentive mechanisms satisfying above properties. The main
notations are summarized in Table I.
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TABLE I
NOTATIONS

Symbol Description

T , m, τj set of tasks, number of tasks, and one task
U , n, i set of users, number of users, and one user
Ut active users at time slot t
V (B) value of bundle B to the platform
vti marginal value of user i at time slot t

ũi, ui i’s utility and i’s utility via Sybil attack
u0 platform utility

T , t, t[i] deadline, each time slot, and time slot i wins
ãi, ai i’s true and submitted start of its active time window
d̃i, di i’s true and submitted end of its active time window

Γ̃i, Γi, Γt
i i’s true and submitted task set, and tasks i can perform

at time t
c̃(·), c(·) i’s true and submitted cost function
At

i , At, A i’s and all active users’ assignment at time slot t, and
overall assignment profile

pti , pt, p i’s and all active users’ payment at time slot t,
and overall payment profile

Bt
i(B) set of subsets of Γt

i that intersect with B

IV. VULNERABILITY OF EXISTING ONLINE MECHANISMS
TO SYBIL ATTACK

In this section, we use examples to show existing online
incentive mechanisms are vulnerable to Sybil attack.

A. Mechanism Classification

We classify existing online incentive mechanisms into three
categories according to their vulnerabilities to Sybil attack.
The first category is the VCG-based mechanism [5]. The
second category is the critical value-based mechanism in [4]
where each winner is paid its critical value. The third category
consists of threshold-based mechanisms [9, 27, 37–39]. The
mechanism in the first category is not Sybil-proof since VCG
auction is proved not Sybil-proof in [34]. Next, we analyze
the vulnerabilities to Sybil attack for the last two categories.

B. Vulnerabilities of Critical Value-based Mechanisms

The mechanism in [4] executes a reverse auction round by
round. In one round of auction, the mechanism sorts all active
users in a non-decreasing order by their bids. The first mt

users will be selected as winners, where mt is the number of
tasks at time slot t. At last, the payment to each winner i is set
to its critical value. Let ti denote the time slot i wins. Winner
i’s critical value is the largest of all the mt-th users’ bids at
each time slot t ∈ [ti, di]. It is obvious that at any time slot
t ∈ [ti, di] in which the mt-th user does not exist, i can submit
a higher bid using a fictitious identity to take the mt-th place.
Therefore, i can increase its critical value and thus increase
its payment via Sybil attack.

C. Vulnerabilities of Threshold-based Mechanisms

Within this category, we further divide the mechanisms into
two groups. The first group comprises mechanisms in [9, 37].
These two mechanisms are two-stage mechanisms in which
the first arrived bne c users are rejected and their bids are used
as the sample for the next stage, where n is the number of
participating users and e is the base of the natural logarithm.
In the first stage, the largest vi/bi value will be used as a

threshold for the user selection in the next stage, where vi
is user i’s marginal value and bi is its bid. In the second
stage, the first user i whose vi/bi value is no less than the
threshold will be selected as a winner. We use the example
in TABLE II. to show that these mechanisms are not Sybil-
proof. In this example, the value of τ1 is 1 and the value
of τ2 is 3. The mechanism will reject the first user (User1)
since n = 5 and b 5

ec = 1. Next, assume user 1 conducts
Sybil attack by submitting two bids βi′ = (1, 1, {τ1}, 2)
and βi′′ = (2, 2, {τ2}, 2) under fictitious identities 1′ and
1′′, respectively. In this case, the first two users (User 1′

and User 2) are rejected since n = 6 and b 6
ec = 2, and

the threshold is 0.5. User i′′ is the third arrived user whose
vi′′/bi′′ = 1.5 > 0.5, and thus it is selected as a winner.
Because these mechanisms satisfy individual rationality, user
i′′ has a non-negative utility. Therefore, these mechanisms
are not Sybil-proof, since a user can increase its utility by
changing from a loser to a winner via Sybil attack.

The second group comprises of an improved two-
stage mechanism [27] and a multi-stage mechanism called
OMG [38, 39]. Given the deadline T and budget B, these two
mechanisms will set the cutoff time of the first stage by T

2blnTc

and T
2blog2 Tc , respectively, and allocate the first stage a stage-

budget B
2blnTc and B

2blog2 Tc , respectively. We take the OMG as
an example and show that it is still not Sybil-proof using the
example in TABLE II. In the first stage, OMG selects users
iteratively according to users’ marginal density, vi/bi, where vi
is user i’s marginal value, and bi is its bid. In each iteration, the
user with the largest marginal value will be selected, and if its
marginal density is not less than a preset density threshold ρ∗

and its bid does not exceed the stage-budget, it will be selected
as a winner. In this example, density threshold ρ∗ = 0.5,
T = 8 and B = 16, and thus the first stage ends at time
slot 1 and the stage-budget in the first stage is 2. The value of
τ1 is 1 and the value of τ2 is 2. In this case, user 1 will not
be selected since its bid is greater than the stage-budget. Next,
assume user 1 conducts Sybil attack by submitting two bids
βi′ = (1, 2, {τ1}, 2) and βi′′ = (2, 2, {τ2}, 2) under fictitious
identities 1′ and 1′′, respectively. In this case, user 1′ will win
with non-negative utility since OMG is individually rational.
Therefore, OMG is not Sybil-proof, since a user can increase
its utility by changing from a loser to a winner via Sybil attack.

TABLE II
EXAMPLE SHOWING VULNERABILITIES TO SYBIL ATTACK

User Bid (ai, di, Γi, bi)

1 (1,2,{τ1, τ2}, 4)
2 (2,2,{τ1}, 2)
3 (3,4,{τ1}, 3)
4 (3,3,{τ2}, 4)
5 (3,4,{τ1, τ2}, 4)

V. SOS: SYBIL-PROOF ONLINE INCENTIVE MECHANISM
FOR SINGLE-MINDED CASE

In this section, we design and analyze SOS, a Sybil-proof
online incentive mechanism for SM case.
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A. Design Rationale

In SM case, a user could maximize its utility by submitting
multiple subsets of its task set using multiple identities with
different active time window in the hope that all the identities
will be selected as winners. In order to design Sybil-proof
mechanisms, we provide a sufficient condition for an online
mechanism to be Sybil-proof in the following theorem.

Theorem 1: An online mechanism is Sybil-proof if it
satisfies the following two conditions: If any user i pretends
two identities i′ and i′′, and both i′ and i′′ are selected as
winners with assignment Ai′ and Ai′′ , respectively within
[ãi, d̃i], then

1) i should be selected as a winner with assignment Ai =
Ai′ ∪Ai′′ within [ãi, d̃i] while using only one identity;

2) pi ≥ pi′ + pi′′ .

Proof: Assume user i pretends two identities i′ and i′′,
and both i′ and i′′ are winners within its true active time
window with assignment Ai′ and Ai′′ , respectively. According
to 1), i would have been a winner within its true active time
window with assignment Ai = Ai′ ∪ Ai′′ . According to (1),
user i’s utility is ũi = pi − c̃i(Ai). According to (4), user i’s
utility via Sybil attack is ui = pi′ + pi′′ − c̃i(Ai). Because of
2), we have pi ≥ pi′ + pi′′ , and thus ũi ≥ ui. Therefore, user
i cannot increase its utility via Sybil attack.

The following theorem will be used to guarantee the truth-
fulness of SOS.

Theorem 2: [4] An online mechanism is truthful iff:

• The winner selection rule is monotone: If user i wins the
auction by bidding βi = (ai, di,Γi, bi), it also wins by
bidding β′i = (a′i, d

′
i,Γ
′
i, b
′
i), where a′i ≤ ai, d

′
i ≥ di,Γi ⊆

Γ′i, b
′
i ≤ bi;

• Each winner is paid the critical value, which is the smallest
value such that user i would lose the auction if it bids
higher than this value.

In order to guarantee Sybil-proofness and truthfulness, SOS
should satisfy both Theorem 1 and Theorem 2.

B. Design of Mechanism

In this section, we describe the details of SOS, which is
comprised of two subroutines: winner selection with assign-
ment and payment determination.

The winner selection with assignment is illustrated in Al-
gorithm 1. It selects winners iteratively at each time slot until
all tasks are assigned or deadline T is reached. Let Rt denote
the set of currently unassigned tasks and vti = V (Rt ∩ Γi)
denote the marginal value of user i to the platform at time slot
t. At each time slot t, Algorithm 1 selects the user with the
largest criterion value, vti−bi, from all active users in U t. If its
criterion value is non-negative, this user will be put into winner
setW and assigned the tasks it submits. Otherwise, it will not
be assigned tasks. All active users’ task assignments constitute
the assignment profileAt of time slot t. The assignment profile
of every time slot constitutes the overall assignment profile A.
The outcome of Algorithm 1 are A and W .

The payment determination is illustrated in Algorithm 2.
The input are user i’s ID, the time slot t[i] in which i is
assigned tasks, and the set Rt[i] of unassigned tasks at the
beginning of time slot t[i]. For each time slot in [t[i], di],
Algorithm 2 calculates the highest price i can bid in order
to be a winner. At last, the payment to user i is set to the
highest price among these prices. Note that

pi = arg max
t∈[t[i],di]

{vti − ct}, (6)

where ct = max{0, vtij − bij}, and ij is the user with the
largest criterion value at time slot t when i is not in U t.

The main algorithm of SOS is illustrated in Algorithm 3.
Note that, there is at most one winner at each time slot
according to Algorithm 1. Therefore, SOS iterates all time
slots and calculates the payment for the winner at each time
slot using Algorithm 2.

Algorithm 1: SOS-WSA(T , T )
1 W ← ∅, At ← ∅, ∀t ∈ [1, T ], t← 1, Rt ← T ;
2 while Rt 6= ∅ and t ≤ T do
3 Ut ← the set of active users at time slot t;
4 At

j ← ∅, ∀j ∈ Ut;
5 i← arg maxj∈Ut (vtj − bj);
6 if bi ≤ vti then
7 W ←W ∪ {i}, At

i ← Γi, Rt+1 ←Rt \ Γi;
8 end
9 t← t+ 1;

10 end
11 A ← (A1, . . .AT );
12 return (A,W).

Algorithm 2: SOS-PD(i, t[i], Rt[i])
1 t← t[i], p

t[i]
i ← 0;

2 while t ≤ di and Rt 6= ∅ do
3 Ut ← the set of active users at time slot t;
4 Ut ← Ut \ {i};
5 ij ← arg maxj∈Ut (vtj − bj);
6 if bij ≤ vtij then

7 p
t[i]
i ← max{pt[i]i , vti − (vtij − bij )};

8 Rt+1 ←Rt \ Γi;
9 else

10 p
t[i]
i ← max{pt[i]i , vti};

11 end
12 t← t+ 1;
13 end
14 return pt[i]i .

Algorithm 3: SOS(T , T )
1 t← 1 , Rt ← T ;
2 (A,W)← SOS-WSA(T , T );
3 while Rt 6= ∅ and t ≤ T do
4 i← j ∈ W s.t. At

j 6= ∅ ;
5 pti ← SOS-PD(i, t, Rt);
6 Rt+1 ←Rt \ At

i ;
7 t← t+ 1;
8 end
9 return (A, p).

C. Analysis of SOS

In this section, we prove the properties of SOS in the
following theorem.
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Theorem 3: SOS is computationally efficient, individually
rational, truthful and Sybil-proof in SM case.
We prove this theorem with the following lemmas.

Lemma 1: SOS is computationally efficient.
Due to space limit, we omit the proof for this lemma.

Lemma 2: SOS is individually rational.
Proof: For any winner i, assume it is selected at time

slot t[i] with its true bid, i.e., bi = c̃(Γ̃i). If there exists a
winner j at time slot t[i] when i is not in U t[i], we have
v
t[i]
i − bi ≥ v

t[i]
j − bj ≥ 0 since i was the winner at time

slot t[i]. Then according to Line 7 in Algorithm 2, we have
p
t[i]
i ≥ v

t[i]
i −(v

t[i]
j −bj) ≥ bi. If there is no winner at time slot

t[i] when i is not in U t[i], we have pi ≥ v
t[i]
i ≥ bi according

to Line 10. Therefore, ui = pi − c̃(Γ̃i) = pi − bi ≥ 0, and
SOS is individually rational.

Lemma 3: SOS is truthful.
Proof: We first prove that user i cannot increase its utility

by submitting a false task set. We then prove that user i cannot
increase its utility by submitting a false active time window
or a false cost. If user i submits a false task set Γi ⊂ Γ̃i, the
utility of i is 0 according to (1). On the contrary, if Γi\Γ̃i 6= ∅,
user i will not be paid since it cannot finish all the tasks in
Γi. Thus, there is no incentive for i to submit a false task set.

To prove that user i cannot increase its utility by submitting
a false active time window or a false cost, it suffices to prove
that the selection rule of SOS is monotone and the payment
to each winner is its critical value according to Theorem 2.
Obviously, the criterion value of a user will increase with the
decrease of user’s cost. Meanwhile, due to the submodularity
of user’s marginal value, the criterion value of a user at each
time slot will not decrease if it bids a wider active time
window. Therefore, the selection rule of SOS is monotone.
Next, we prove that the payment pi to winner i is its critical
value. Assume i was selected at time slot t[i] with bi, and thus
pi = p

t[i]
i ≥ bi. If user i bids b̃i > pi, it is obvious that i still

loses at any time slot t ∈ [ai, t[i]) since its criterion value is
less than that when i bids bi but loses in [ai, t[i]). At any time
slot t ∈ [t[i], di], i still loses since there always exists a user
ij such that vti − b̃i < vtij − bij according to (6). If user i bids
b̃i < pi, i wins at least within [t[i], di], according to (6), if not
earlier. Therefore, pi is the critical value for user i.

Lemma 4: SOS is Sybil-proof.
Proof: We prove SOS is Sybil-proof by proving it satisfies

the sufficient conditions in Theorem 1. Assume user i submits
(ai′ , di′ ,Γi′ , bi′) and (ai′′ , di′′ ,Γi′′ , bi′′) using two fictitious
identities i′ and i′′, respectively, where Γi′ ∪ Γi′′ = Γ̃i.

We first prove that SOS satisfies the first condition in The-
orem 1. We assume that both i′ and i′′ are selected as winner
at time t[i′] and t[i′′] ( w.l.o.g. t[i′] < t[i′′]), respectively. It
implies that Γi′ ⊂ Γ̃i and Γi′ ⊂ Γ̃i, since one will make
the other lose otherwise. In addition, we have vt[i

′]
i′ ≥ bi′ and

v
t[i′′]
i′′ ≥ bi′′ , since both i′ and i′′ are winners. If user i use

a single identity and submits its true bid (ãi, d̃i, Γ̃i, bi). At
time slot t[i′], we have v

t[i′]
i − bi ≥ v

t[i′]
i′ + v

t[i′′]
i′′ − bi ≥

v
t[i′]
i′ + v

t[i′′]
i′′ − bi′ − bi′′ . The first inequation lies in the fact

that Γi′ ∪ Γi′′ = Γ̃i. The second inequation is based on
the fourth property of the cost function. Therefore, we have
v
t[i′]
i − bi ≥ v

t[i′]
i′ − bi′ since vt[i

′′]
i′′ − bi′′ ≥ 0. This implies

that i wins at t[i′] at the latest while using a single identity.
Therefore, the first condition in Theorem 1 is satisfied.

We next prove that SOS satisfies the second condition in
Theorem 1. We know that user i wins at t[i] ≤ t[i′]. Let tc,
t′c and t′′c denote the time that determine the payment of i,
i′ and i′′ according to (6), respectively. We know that tc ∈
[t[i], di], t′c ∈ [t[i′], di′ ], and t′′c ∈ [t[i′′], di′′ ] according to
Algorithm 2. We then prove by cases. In Case 1, tc ∈ [t[i′], di]

and t′c ≤ t′′c . According to (6), we have pi ≥ v
t′c
i − ct

′
c ≥

v
t′c
i′ + v

t′′c
i′′ − ct

′
c ≥ pi′ + pi′′ . The first inequation results from

the fact t′c ∈ [t[i], di]. The second inequation is based on the
fact Γi′ ∪ Γi′′ = Γ̃i. The third inequation is based on the
fact pi′ = v

t′c
i′ − ct

′
c and pi′′ ≤ v

t′′c
i′′ according to (6). In Case

2, tc ∈ [t[i′], di] and t′c > t′′c . Similar to Case 1, we can
prove that pi ≥ v

t′′c
i − ct

′′
c ≥ v

t′c
i′ + v

t′′c
i′′ − ct

′′
c ≥ pi′ + pi′′ .

In Case 3, tc ∈ [t[i], t[i′]). Because tc < t[i′], we have pi ≥
max{vt

′
c
i − ct

′
c , v

t′′c
i − ct

′′
c } ≥ pi′ + pi′′ based on the proofs of

Case 1 and Case 2. Therefore, we have pi ≥ pi′ +pi′′ . Hence,
the second condition in Theorem 1 is satisfied.

Therefore, SOS is Sybil-proof according to Theorem 1. We
can use a similar proof for the case where a user pretends
more than two identities.

VI. SOM: SYBIL-PROOF ONLINE INCENTIVE MECHANISM
FOR MULTI-MINDED CASE

In this section, we design and analyze SOM, a Sybil-proof
online incentive mechanism for MM case.

A. Design Rationale

In MM case, a user is willing to perform any subset of its
task set and tries to maximize its utility by submitting multiple
bids under fictitious identities. To guarantee that each user
submits its true cost function, SOM gives the payment to each
user, which is independent of its own cost function. The time-
truthfulness is based on the monotonic task assignment rule
and the submodularity of users’ marginal value. To achieve
Sybil-proofness, we extend the characterization of Sybil-proof
mechanisms in [33] to the online scenario.

B. Design of Mechanism

The main algorithm of SOM is shown in Algorithm 4. It
selects users iteratively at each time slot until all tasks are
assigned or deadline T is reached. Given the sensing tasks T
and deadline T , SOM outputs the overall assignment profile
A and the overall payment profile p.

Let Γti ⊆ Γ̃i denote a set of unassigned tasks that i can
perform at time slot t. Let Bti(B) = {B′|B′ ⊆ Γti,B′∩B 6= ∅}.
At each time slot t, SOM first calculates the payment pti,B
to each active user i for any bundle B ⊆ Γti. Note that the
payment to user i for any bundle B ⊆ Γti is independent of its
cost function ci(·), i.e.,

pti,B = V (B)−max{0, max
j 6=i,B′∈Bt

j(B)
(V (B′)−cj(B′))}. (7)
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Algorithm 4: SOM(T , T )
1 F ← ∅, At ← ∅, ∀t ∈ [1, T ], t← 1;
2 while F 6= T and t ≤ T do
3 Ut ← the set of active users at time slot t;
4 Γt

i ← Γi \ F , ∀i ∈ Ut;
5 foreach i ∈ Ut do
6 Calculate the payment to i for any bundle B ⊆ Γt

i , pti,B ←
V (B)−max{0,maxj 6=i,B′∈Bt

j(B)(V (B′)− cj(B′))};
7 end
8 foreach i ∈ Ut do
9 At

i ← arg maxB⊆Γt
i
(pti,B − ci(B));

10 pti ← pt
i,At

i
;

11 F ← F ∪At
i ;

12 end
13 t← t+ 1;
14 end
15 A = A1, . . .AT );
16 p = (p1, . . . , pT );
17 return A and p.

At last, SOM will assign each active user i a set of tasks Ati,
which is a bundle B ⊆ Γti maximizing its utility based on the
calculated payment, i.e.,

Ati = arg max
B⊆Γt

i

(pti,B − ci(B)). (8)

The payment pti to each user i at time slot t for assignment
Ati is pti,At

i
. Note that pti = pti,At

i
= 0, if Ati = ∅.

C. Analysis of SOM

In this section, we prove the properties of SOM in the
following theorem.

Theorem 4: SOM is individually rational, truthful and
Sybil-proof in MM case.

We prove this theorem with the following lemmas.
Lemma 5: SOM is individually rational.

Proof: The utility of any active user i at any time slot t
is 0 when the assignment Ati = ∅ according to (2). According
to (8), at any time slot t, SOM assigns any active user i a
bundle Ati maximizing its utility. It implies that Ati 6= ∅ only
if ui = pti,At

i
− c̃i(Ati) > 0, and thus the utility of any user i

is non-negative. Therefore, SOM is individually rational.
Lemma 6: SOM is truthful.

Proof: We first prove that user i cannot increase its utility
by submitting a false task set. Then, we prove that user i
cannot increase its utility by submitting a false active time
window or a false cost function. Assume user i submits a
false bid βi = (ai, di,Γi, ci(·)). By (7), at any time slot
t, the payment to i for any bundle B ⊆ Γti is calculated
independently of i’s own cost function. If Γi ⊂ Γ̃i, the
payment to i for any subset of Γi is the same as that when i
submits Γ̃i. In addition, at each time slot t, SOM assigns i a
bundle maximizing its utility by (8). Therefore, user i cannot
increase its utility by submitting Γi ⊂ Γ̃i. On the contrary, if
Γi \ Γ̃i 6= ∅, it will not be assigned tasks in Γi \ Γ̃i 6= ∅, since
its utility is negative according to the second property of the
cost function. Therefore, user i has no incentive to submit a
false task set.

Next, we prove that user i has no incentive to submit a
false active time window, i.e., ai > ãi or di < d̃i. By (7),

SOM only considers Γti for each active user i at any time slot
t. Besides, the size of Γti is non-increasing with time. Thus,
a narrow time window will not increase a user’s chance to be
a winner. Therefore, a user has no incentive to submit a false
time window.

At last, a false cost function ci(·) 6= c̃i(·) can only affect
the result of (8) according to SOM. Let Ati and Ãti denote the
assignments to i when i submits ci(·) and the true cost function
c̃i(·), respectively. It is obvious that the utility of i will not
change if Ati = Ãti. If Ati 6= Ãti, we have pi,Ãt

i
− c̃i(Ãti) ≥

pi,At
i
− c̃i(Ati) because of both Ati and Ãti are the subset of

Γti, and Ãti is the bundle maximizing i’s utility. Thus, user i
cannot increase its utility by submitting ci(·).

Therefore, SOM is truthful.
Lemma 7: SOM is Sybil-proof.

Proof: We assume that user i pretends two identities i′

and i′′ who are assigned Ai′ and Ai′′ , respectively. Let ui(Ai)
denote the utility of user i when assigned Ai. For any time slot
t ∈ [ai, di], we have ui(Ati) ≥ ui(Ati′∪Ati′′) since Ati′∪Ati′′ ⊆
Γti and SOM assigns i the bundle that maximizes its utility.
Next, we prove that ui(Ati′ ∪ Ati′′) ≥ pti′ + pti′′ − ci(Ati′ ∪
Ati′′). Let mi′ denote maxj 6=i′,B∈Bt

j(At
i′ )

(V (B)− cj(B)), and
mi′′ denote maxj 6=i′′,B∈Bt

j(At
i′′ )

(V (B) − cj(B)). By (7), the
payments to i′ and i′′ at any time slot t are

pti′ = pti′,At
i′

= V (Ati′)−max {0,mi′} ,

pti′′ = pti′′,At
i′′

= V (Ati′′)−max {0,mi′′} .

Let Ãti = Ati′ ∪ Ati′′ , the payment to i when assigned Ãti is

pt
i,Ãt

i
= V (Ãti)−max

{
0, max
j 6=i,B∈Bt

j(Ãt
i)

(V (B)− cj(B))

}
.

In addition, we know that⋃
∀j∈St,j 6=i

Btj(Ãti) =
⋃

∀j∈St,j 6=i′
Btj(Ati′) ∪

⋃
∀j∈St,j 6=i′′

Btj(Ati′′).

Let mi denote maxj 6=i,B∈Bt
j(Ãt

i)
(V (B)−cj(B)). Thus we have

mi = max{mi′ ,mi′′}, and thus mi ≤ mi′ +mi′′ . In addition,
we can prove that Ati′ ∩ Ati′′ = ∅ by contradiction. Assume
Ati′ ∩ Ati′′ 6= ∅, the payments to i′ is

pti′,At
i′

=V (Ati′)−max{0,mi′}≤V (Ati′)−(V (Ati′′)−ci(Ati′′))

The inequality results from the fact V (Ati′′) − ci(Ati′′) ≤
mi′ , since Ati′′ ∈

⋃
∀j∈St,j 6=i′ Btj(Ati′). Similarly, we have

pti′′,At
i′′
≤ V (Ati′′) − (V (Ati′) − ci(Ati′)). Therefore, the

summation of the utilities of i′ and i′′ at any time slot t is

pti′,At
i′
− ci(Ati′) + pti′′,At

i′′
− ci(Ati′′)

≤ V (Ati′)− (V (Ati′′)− ci(Ati′′))− c̃i(Ati′)
+ V (Ati′′)− (V (Ati′)− ci(Ati′))− ci(Ati′′) = 0.

It implies that Ati′ = Ati′′ = ∅ since SOM is individually
rational, which contradicts the assumption. Therefore, Ati′ ∩
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Ati′′ = ∅. We also have V (Ãti) = V (Ati′ ∪ Ati′′) = V (Ati′) +
V (Ati′′), since Ãti = Ati′ ∪ Ati′′ . By (7), the payment to i is

pt
i,Ãt

i
= V (Ãti)−max{0,mi}

≥ V (Ãti)− (mi′ +mi′′)

= V (Ati′ ∪ Ati′′)− (mi′ +mi′′)

= V (Ati′)−mi′ + V (Ati′′)−mi′′

≥ pti′,At
i′

+ pti′′,At
i′′
.

In addition, we have ci(Ãti) ≤ ci(Ati′) + ci(Ati′′) because of
the fourth property of the cost function. By (2) and (5), the
utility of i when using two identities is not greater than that
obtained by using a single identity at any time slot t. User
i’s utility via Sybil attack is not greater than that obtained by
using a single identity.

Therefore, SOM is Sybil-proof.
Remark: We can use a proof similar to that in Lemma 7 to

prove that Ai∩Aj = ∅ for any two users i and j. In addition,
SOM does not satisfy computational efficiency, since at each
time slot t it calculates the payments to each active user i for
every subset of Γti, and the time complexity is exponential to
the largest |Γti| for all i ∈ St. In reality, however, the number
of tasks each user can perform is very small because of various
constraints, e.g., travel budget [21], and thus the execution time
of SOM is still practical.

VII. PERFORMANCE EVALUATION

In this section, we compare the performances of SOS and
SOM with three benchmarks. The first benchmark is an online
mechanism adapted from [4] for SM case, denoted by Greedy.
Note that, this mechanism is not Sybil-proof. The second
benchmark is SPIM-S [16], which is a Sybil-proof mechanism
for SM case. The third benchmark is SPIM-M [16], which
is a Sybil-proof mechanism for MM case. The performance
metrics include total payment, platform utility and Sybil-
proofness.

A. Evaluation Setup

For a fair comparison with SPIM-S and SPIM-M, we use
the same dataset, which is a real-world dataset consisting
of the traces of taxi drivers [1]. As in [16], we consider a
crowdsensing system in which the tasks are measuring the
Wi-Fi signal strength at specific locations. In this system, tasks
are represented by GPS locations of the taxi drivers in the
dataset, and users are all the taxi drivers.

In our evaluation, we randomly select locations on taxi
drivers’ traces as the sensing tasks. The value of each task
is uniformly distributed over [1, 5], and users’ cost for each
task is uniformly distributed over [1, 5]. We set the deadline
(T ) to 60 (min), each user i’s ãi is uniformly distributed over
[0, 60], and the active time window (d̃i − ãi) of each user is
uniformly distributed over [0, 5]. To evaluate the impact of the
number of sensing tasks (m) on the performance metrics, we
fix the number of users (n) at 200 and vary m from 20 to 60
with a step of 10. To evaluate the impact of the number of
users on the performance metrics, we fix m at 150 and vary n

from 100 to 300 with a step of 50. All the results are averaged
over 1000 independent runs.

B. Evaluation of Total Payment

The impacts of m and n on the total payment to users
are shown in Fig. 2. In Fig. 2 (a), we see that the total
payment of both offline and online mechanisms increase with
the increase of m. This is because the platform may recruit
more users when m increase, and thus has a higher payment.
In addition, we see that the total payment of the online
mechanisms (Greedy, SOS, SOM) are higher than that of the
offline mechanisms (SPIM-S, SPIM-M). This is because the
online mechanisms may recruit more users when users arrives
in different time slots, and thus has a higher payment. In
Fig. 2 (b), we observe that the total payment of SPIM-M
decrease with the increase of n. This is because, with more
users, SPIM-M may find more low-cost users to perform the
tasks. The total payment of the other four mechanisms increase
slightly with the increase of n. This is because, with more
users, these mechanisms may assign more tasks incurring a
higher payment. In addition, we see that the total payment
of the online mechanisms are higher than that of the offline
mechanisms as explained before. Note that, SOS has a similar
performance as Greedy, which is not Sybil-proof.
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Fig. 2. Total payment

C. Evaluation of Platform Utility

The impacts of m and n on the platform utility are shown
in Fig. 3. In both Fig. 3 (a) and Fig. 3 (b), we see that the
platform utilities achieved by the offline mechanisms (SPIM-S,
SPIM-M) are larger than that achieved by online mechanisms
(Greedy, SOS, SOM). This is because offline mechanisms
know all users’ bids before making decision, while online
mechanisms have no information of future users. In addition,
we see that SOM outperforms SOS in term of the platform
utility. This is because SOM assigns each task to at most one
user, and thus avoids paying users to perform duplicated tasks.
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D. Evaluation of Sybil-proofness

Fig. 4 shows the utility of Sybil attacker and the other users
without Sybil attack, denoted by Attacker and Other, and that
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via Sybil attack, denoted by Attacker-Sybil and Other-Sybil. In
both Fig. 4 (a) and Fig. 4 (b), we see that the attacker increase
its utility while decreasing the utility of others’ in Greedy. This
is because Greedy is vulnerable to Sybil attack. However, the
attacker cannot increase its utility in SPIM-S, SOS and SOM,
since they are Sybil-proof.
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Fig. 4. Sybil-proofness

VIII. CONCLUSION

In this paper, we demonstrated that existing online in-
centive mechanisms for crowdsensing are all vulnerable to
Sybil attack. We proposed two Sybil-proof online incentive
mechanisms SOS and SOM for single-minded case and multi-
minded case, respectively. Specifically, SOS achieves computa-
tional efficiency, individual rationality, truthfulness and Sybil-
proveness. SOM achieves individual rationality, truthfulness
and Sybil-proveness. We rigorously proved the desired prop-
erties of the mechanisms and evaluated their performances
through extensive simulations.

REFERENCES

[1] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi,
“CRAWDAD data set roma/taxi (v. 2014-07-17),” Downloaded from
http://crawdad.org/roma/taxi/, Jul. 2014.

[2] J. R. Douceur, “The sybil attack,” in IPTPS, 2002, pp. 251–260.
[3] Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos, “TRAC:

Truthful auction for location-aware collaborative sensing in mobile
crowdsourcing,” in INFOCOM, 2014, pp. 1231–1239.

[4] Z. Feng, Y. Zhu, Q. Zhang, H. Zhu, J. Yu, J. Cao, and L. M. Ni,
“Towards truthful mechanisms for mobile crowdsourcing with dynamic
smartphones,” in ICDCS, 2014, pp. 11–20.

[5] L. Gao, F. Hou, and J. Huang, “Providing long-term participation
incentive in participatory sensing,” in INFOCOM, 2015, pp. 2803–2811.

[6] “Gigwalk,” http://www.gigwalk.com/.
[7] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou,

“Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm,” ACM Computing Surveys, vol. 48,
no. 1, p. 7, 2015.

[8] K. Han, Y. He, H. Tan, S. Tang, H. Huang, and J. Luo, “Online pricing
for mobile crowdsourcing with multi-minded users,” in MobiHoc, 2017,
pp. 18:1–18:10.

[9] K. Han, C. Zhang, J. Luo, M. Hu, and B. Veeravalli, “Truthful scheduling
mechanisms for powering mobile crowdsensing,” IEEE Trans. Comput.,
vol. 65, no. 1, pp. 294–307, 2016.

[10] L. G. Jaimes, I. Vergara-Laurens, and A. Raij, “A crowd sensing incen-
tive algorithm for data collection for consecutive time slot problems,”
in LATINCOM, 2014, pp. 1–5.

[11] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality of information
aware incentive mechanisms for mobile crowd sensing systems,” in
MobiHoc, 2015, pp. 167–176.

[12] H. Jin, L. Su, B. Ding, K. Nahrstedt, and N. Borisov, “Enabling privacy-
preserving incentives for mobile crowd sensing systems,” in ICDCS,
2016, pp. 344–353.

[13] H. Jin, L. Su, and K. Nahrstedt, “Theseus: Incentivizing truth discovery
in mobile crowd sensing systems,” in MobiHoc, 2017, pp. 1:1–1:10.

[14] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “INCEPTION: incentivizing
privacy-preserving data aggregation for mobile crowd sensing systems,”
in MobiHoc, 2016, pp. 341–350.

[15] I. Koutsopoulos, “Optimal incentive-driven design of participatory sens-
ing systems,” in INFOCOM, 2013, pp. 1402–1410.

[16] J. Lin, M. Li, D. Yang, G. Xue, and J. Tang, “Sybil-proof incentive
mechanisms for crowdsensing,” in INFOCOM, 2017, pp. 2088–2096.

[17] J. Lin, D. Yang, M. Li, J. Xu, and G. Xue, “BidGuard: A framework for
privacy-preserving crowdsensing incentive mechanisms,” in CNS, 2016,
pp. 439–447.

[18] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen,
E. Howard, R. West, and P. Boda, “Peir, the personal environmental
impact report, as a platform for participatory sensing systems research,”
in MobiSys, 2009, pp. 55–68.

[19] “Opensignal,” http://opensignal.com/.
[20] D. Peng, F. Wu, and G. Chen, “Pay as how well you do: A quality based

incentive mechanism for crowdsensing,” in MobiHoc, 2015.
[21] L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka, “Spatial task

assignment for crowd sensing with cloaked locations,” in MDM, vol. 1,
2014, pp. 73–82.

[22] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu, “Ear-
phone: an end-to-end participatory urban noise mapping system,” in
IPSN, 2010, pp. 105–116.

[23] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove, “An analysis of
social network-based sybil defenses,” in SIGCOMM, 2010, pp. 363–374.

[24] B. Wang, L. Zhang, and N. Z. Gong, “SybilSCAR: Sybil detection in
online social networks via local rule based propagation,” in INFOCOM,
2017, pp. 1099–1107.

[25] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao,
“Defending against sybil devices in crowdsourced mapping services,”
in MobiSys, 2016, pp. 179–191.

[26] Q. Wang, B. Ye, B. Tang, S. Guo, and S. Lu, “eBay in the clouds: False-
name-proof auctions for cloud resource allocation,” in ICDCS, 2015, pp.
153–162.

[27] Y. Wang, Z. Cai, G. Yin, Y. Gao, X. Tong, and G. Wu, “An incentive
mechanism with privacy protection in mobile crowdsourcing systems,”
Computer Networks, vol. 102, pp. 157–171, 2016.

[28] “Waze,” https://www.waze.com/.
[29] Y. Wen, J. Shi, Q. Zhang, X. Tian, Z. Huang, H. Yu, Y. Cheng, and

X. Shen, “Quality-driven auction based incentive mechanism for mobile
crowd sensing,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 4203–
4214, 2015.

[30] J. Xu, J. Xiang, and D. Yang, “Incentive mechanisms for time win-
dow dependent tasks in mobile crowdsensing,” IEEE Transactions on
Wireless Communications, vol. 14, no. 11, pp. 6353–6364, 2015.

[31] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing,” in MobiCom,
2012, pp. 173–184.

[32] D. Yang, G. Xue, X. Fang, and J. Tang, “Incentive mechanisms for
crowdsensing: Crowdsourcing with smartphones,” IEEE/ACM Trans.
Netw., vol. 24, no. 3, pp. 1732–1744, 2016.

[33] M. Yokoo, “Characterization of strategy/false-name proof combinatorial
auction protocols: price-oriented, rationing-free protocol,” in IJCAI,
2003, pp. 733–742.

[34] M. Yokoo, Y. Sakurai, and S. Matsubara, “The effect of false-name bids
in combinatorial auctions: New fraud in internet auctions,” Games and
Economic Behavior, vol. 46, no. 1, pp. 174–188, 2004.

[35] Q. Zhang, Y. Wen, X. Tian, X. Gan, and X. Wang, “Incentivize crowd
labeling under budget constraint,” in INFOCOM, 2015, pp. 2812–2820.

[36] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Truthful incentive
mechanisms for crowdsourcing,” in INFOCOM, 2015, pp. 2830–2838.

[37] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li, “Free market of
crowdsourcing: Incentive mechanism design for mobile sensing,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 12, pp. 3190–3200, 2014.

[38] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint,” in INFOCOM, 2014, pp. 1213–1221.

[39] D. Zhao, X.-Y. Li, and H. Ma, “Budget-feasible online incentive mech-
anisms for crowdsourcing tasks truthfully,” IEEE/ACM Trans. Netw.,
vol. 24, no. 2, pp. 647–661, 2016.

[40] Z. Zheng, Y. Peng, F. Wu, S. Tang, and G. Chen, “An online pricing
mechanism for mobile crowdsensing data markets,” in MobiHoc, 2017,
pp. 26:1–26:10.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

2446


