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Abstract—The rapid growth of sensor-embedded smartphones
has led to a new data sensing and collecting paradigm, known
as crowdsensing. Many auction-based incentive mechanisms have
been proposed to stimulate smartphone users to participate in
crowdsensing. However, none of them have taken into considera-
tion the Sybil attack where a user illegitimately pretends multiple
identities to gain benefits. This attack may undermine existing
inventive mechanisms. To deter the Sybil attack, we design Sybil-
proof auction-based incentive mechanisms for crowdsensing in
this paper. We investigate both the single-minded and multi-
minded cases and propose SPIM-S and SPIM-M, respectively.
SPIM-S achieves computational efficiency, individual rationality,
truthfulness, and Sybil-proofness. SPIM-M achieves individual
rationality, truthfulness, and Sybil-proofness. We evaluate the
performance and validate the desired properties of SPIM-S and
SPIM-M through extensive simulations.

I. INTRODUCTION

Nowadays, the advance of high-speed 3G/4G networks and

the proliferation of powerful sensors-embedded smartphones

has led to a new paradigm, known as crowdsensing, which

senses and collects data efficiently. Examples include [1, 2].

A typical crowdsensing system consists of a cloud-based

platform and a collection of smartphone users. The platform

works as a sensing service buyer who launches a set of sensing

tasks and selects a specific set of smartphone users to perform

the sensing tasks. Once selected by the platform, a smartphone

user starts to perform the assigned sensing tasks and sends

sensing data back to the platform. With the low deploying

cost and high sensing coverage, crowdsensing has enabled a

wide rage of applications [16, 20]. However, most of them

assume that the smartphone users contribute to the platform

voluntarily. In reality, smartphone users may be reluctant to

participate in a crowdsensing system because they consume

their own resources, e.g., sensing time, battery, and cellular

data traffic, while performing the sensing tasks. Furthermore,

they might suffer from the potential privacy disclosure by shar-

ing the sensing data with personal information, e.g., location

tags. It is clear that the success of a crowdsensing system

strongly relies on the number of participating users, and thus

it is necessary to design incentive mechanisms to stimulate

users to participate in crowdsensing.

Auction is an efficient method to design incentive mecha-

nisms, and a number of auction-based incentive mechanisms

have been proposed for crowdsensing [10, 13, 31, 36]. These
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incentive mechanisms model a crowdsensing system as a

reverse auction in which the platform is the service buyer, and

the smartphone users are the service sellers who bid to perform

sensing tasks. In these mechanisms, the service buyer selects

users according to their submitted bids. Some alternatives

are based on all-pay auction [15] or double auction [4]. The

objectives of these mechanisms focus on either maximizing

the total value gained by the platform or minimizing the

social cost. However, none of aforementioned mechanisms

take the Sybil attack [5], also known as false-name attack,

into consideration.

Recently, the effects of Sybil attack have been analyzed

in social networks [24], incentive tree mechanism [35], cloud

resource allocation [26], spectrum auction [27], and mobile

apps [25]. The impact of Sybil attack in auctions has been

analyzed in [32, 33].

In crowdsensing, a user may try to profit from submitting

multiple bids under fictitious identities, e.g., creating multiple

accounts. This attack is easy to conduct but difficult to detect.

Existing auction-based incentive mechanisms are vulnerable

to Sybil attack. Among them, all the VCG auction-based

incentive mechanisms [6, 8, 21, 28] are not Sybil-proof, since

the VCG auction has been proved not Sybil-proof in [33].

Mechanisms proposed in [4, 7, 11, 34, 36] are not Sybil-

proof, since a user can exploit multiple fictitious identities

to increase its critical value, and thus increase its payment.

For mechanisms in [9, 29, 37, 38], a user can change from a

loser to a winner with a positive utility through Sybil attack.

A user can increase its utility by completing a subset of its

sensing task set through mechanisms in [30, 31]. We will

use two examples to demonstrate that existing mechanisms

are not Sybil-proof in Section III. The vulnerability of a

mechanism to Sybil attack may make the system fail to achieve

the desired properties, e.g., social cost minimization [29], and

jeopardize the fairness of the system, which discourages users

from participating in crowdsensing. However, the problem of

designing Sybil-proof auction-based incentive mechanisms for

crowdsensing is still open. Moreover, the Sybil attack model

in crowdsensing is yet to be formally defined.

In this paper, we focus on designing Sybil-proof auction-

based incentive mechanisms for crowdsensing. A mechanism

is Sybil-proof if, participating in crowdsensing using a single

identity is a dominant strategy of each user. The main contri-

butions of this paper are as follows:

• We are the first, to the best of our knowledge, to investigate

Sybil attack in auction-based incentive mechanisms for

crowdsensing. As an essential step, we formally define the

Sybil attack model in crowdsensing.



• We analyze existing auction-based incentive mechanisms

and demonstrate that all of them are vulnerable to Sybil

attack.

• Depending on whether a user is willing to perform a subset

of its submitted task set, we investigate both the single-

minded and multi-minded cases. We design SPIM-S and

SPIM-M for these two cases, respectively. In order to de-

sign SPIM-S, we provide a sufficient condition for a mech-

anism to be Sybil-proof. We prove that SPIM-S achieves

computational efficiency, individual rationality, truthful-

ness, and Sybil-proofness, and that SPIM-M achieves indi-

vidual rationality, truthfulness, and Sybil-proofness. Note

that truthfulness is for both the task set and the cost.

The remainder of this paper is organized as follows. In Sec-

tion II, we briefly review the related work. In Section III, we

introduce the system model and the objectives. In Section IV

and Section V, we present our mechanisms for single-minded

case and multi-minded case in detail and prove their desired

properties, respectively. We present performance evaluation in

Section VI. We conclude this paper in Section VII.

II. RELATED WORK

Auction is an efficient method to capture and tackle the

participants’ strategic behaviors, and has been widely used

to design incentive mechanisms. The objectives of most of

the state-of-art auction-based incentive mechanisms are either

maximizing the utility of the platform or the total value of the

sensing tasks to the platform [4, 9, 23, 37] under a certain

constraint e.g., budget, or minimizing the social cost [7, 29].

Yang et al. [30, 31] proposed two incentive mechanisms for

both user-centric and platform-centric models using auction

and Stackelberg game, respectively. Several works [9, 37, 38]

have taken into consideration that smartphone users may

come to a system in an on-line manner. Recently, many

papers [11, 18, 28] considered the quality of the sensing

data. Meanwhile, a number of works explored the privacy-

preserving mechanisms in crowdsensing [12, 14] to protect

users’ privacy. However, none of aforementioned mechanisms

take into consideration the Sybil attack.

The effects of Sybil attack on combinatorial auctions have

been first analyzed in [33]. This work proved that the VCG

auction is not Sybil-proof. Yokoo et al. [32] introduced

the price-oriented rationing-free protocols, which characterize

the Sybil-proof protocols for combinatorial auction. Different

from [32], we consider the value of each task to the platform

and characterize the cost of users to perform sensing tasks in

our system model (to be elaborated in Section III-A).

The problem of designing Sybil-proof auction-based incen-

tive mechanisms for crowdsensing is still open. Moreover,

the Sybil attack model in crowdsensing is yet to be formally

defined. All existing auction-based incentive mechanisms are

vulnerable to Sybil attack, as explained in Section I.

III. MODEL AND PROBLEM FORMULATION

In this section, we present an overview of our crowdsensing

system, model it as a reverse auction, describe the threat

models, and give our desired properties.

A. System Model

Similar to most crowdsensing systems [7, 31], we consider

a crowdsensing system consisting of a platform and a set U =
{1, 2, . . . , n} of n � 2 smartphone users, who are interested

in performing sensing tasks. The platform first publicizes a set

T = {t1, t2, . . . , tm} of m sensing tasks. Each task ti ∈ T
has a value vi to the platform. We use bundle to refer to any

subset of T . There is a function V (B) to calculate the value of

bundle B to the platform, i.e., V (B) = ∑
ti∈B vi,B ⊆ T . Each

user i has a task set Γi ⊆ T , which i can perform according

to its preference. Generalizing existing works, we assume that

each user i has a cost function ci(B), which determines the

cost for i to perform all tasks in bundle B. The cost function

ci(·) satisfies the following properties:

• ci(∅) = 0;

• ci({tj}) = ∞, ∀tj ∈ T \ Γi;

• ci(B′) ≤ ci(B′′), ∀B′,B′′ ⊆ T with B′ ⊆ B′′;
• ci(B) ≤ ci(B′) + ci(B′′), ∀B′,B′′ ⊆ T and B = B′ ∪ B′′.

The physical meanings of the first two properties are obvious.

The third property implies that performing addition tasks may

incur more cost. The last property guarantees that the cost

of performing a set of tasks is not greater than the cost

of performing these tasks separately. These four properties

together closely depict the cost of performing sensing tasks

in practice and serve as a base of our attack model to be

defined in Section III-B.

The platform will assign each user i ∈ U a bundle Ai ⊆ Γi

to complete. Note that Ai = ∅ means user i is not assigned

any task to perform. Let
−→A = (A1,A2, . . . ,An) denote

the assignment profile. At last, the platform calculates the

payment pi for each user i. Note that pi = 0, if Ai = ∅. Let
−→p = (p1, p2, . . . , pn) denote the payment profile. Depending

on whether a user is willing to perform its whole task set, we

consider two cases in this paper. For the single-minded (SM)

case, each user i ∈ U is willing to perform only Γi, and the

utility of i is

ui =

{
pi − ci(Ai), if Ai = Γi;

0, otherwise.
(1)

Since ci(Ai) can only be equal to ci(Γi), we use ci instead of

ci(Ai) for notational simplicity. For the multi-minded (MM)

case, each user i ∈ U is willing to perform any subset of Γi,

and the utility of i when performing bundle Ai ⊆ T is

ui =

{
pi − ci(Ai), if Ai ⊆ Γi;

0, otherwise.
(2)

The utility of the platform is

u0 = V (
⋃
i∈U

Ai)−
∑
i∈U

pi. (3)

In this paper, we model the interaction between the platform

and the smartphone users as a sealed-bid reverse auction,

where the platform is a buyer who buys sensing service and

the smartphone users are sellers who bid to perform sensing

tasks. We call user i a winner if Ai 
= ∅, and a loser otherwise.



Let βi = (Γ̃i, bi) denote the task-cost pair of user i. In the

SM case, bi is a value, while bi is a cost function in the MM

case. A task-cost pair is true if Γ̃i = Γi and bi = ci(Γi) in

the SM case; Γ̃i = Γi and bi = ci(·) in the MM case. At the

beginning of the auction, each user i ∈ U submits its task-cost

pair as its bid to the platform, which is not necessarily its true

task-cost pair. Let
−→
β = (β1, β2, . . . , βn) denote the task-cost

profile. Given the task-cost profile
−→
β , the platform determines

the outcome of the auction, which consists of the assignment

profile
−→A and the payment profile −→p .

B. Threat Models

Threats to Incentive: We assume that users are selfish but

rational. Hence it is possible that user i maximizes its utility by

reporting a false cost value b̃i, which differs from its true cost

ci(Γi) in the SM case; or reporting a false cost function c̃i(·) 
=
ci(·) in the MM case. Besides, user i could also misreport the

task set by submitting Γ̃i 
= Γi. Other threats to incentive, e.g.,

collusion, are out the scope of this paper.

Sybil Attack: Based on our system model, a user could

conduct Sybil attack by submitting multiple task-cost pairs

under fictitious identities. As a simple case, user i could submit

two task-cost pairs βi′ = (Γ̃i′ , b̃i′) and βi′′ = (Γ̃i′′ , b̃i′′) under

two identities i′ and i′′, respectively. This case is sufficient

to represent the general Sybil attack. Depending on whether

a user is interested in only performing its whole task set, we

consider the following two cases.

Single-Minded Case: Each user is interested in only per-

forming its whole task set. User i submits βi′ = (Γ̃i′ , b̃i′) and

βi′′ = (Γ̃i′′ , b̃i′′) using identities i′ and i′′, where Γ̃i′ ∪ Γ̃i′′ =
Γi. User i’s utility ũi through Sybil attack is

ũi =

{
pi′ + pi′′ − ci(Γi), if Ai′ ∪ Ai′′ = Γi;

0, otherwise.
(4)

Multi-Minded Case: Each user is willing to perform any

subset of its task set. User i submits βi′ = (Γ̃i′ , b̃i′) and βi′′ =
(Γ̃i′′ , b̃i′′) using identities i′ and i′′, where Γ̃i′ ⊆ Γi and Γ̃i′′ ⊆
Γi. User i’s utility ũi through Sybil attack is

ũi =

{
pi′ + pi′′ − ci(Ai′ ∪ Ai′′), if Ai′ ∪ Ai′′ ⊆ Γi;

0, otherwise.
(5)

If ũi > ui, user i has an incentive to conduct Sybil attack in

either case.

Note that because SM case is a special case of MM case,

we have: 1) if a mechanism is not Sybil-proof in SM case, it is

not Sybil-proof in MM case; 2) if a mechanism is Sybil-proof

in MM case, it is Sybil-proof in SM case. Next, we show that

existing mechanisms are not Sybil-proof in either SM case

or MM case. We classify them into four categories according

to their vulnerabilities to Sybil attack. The first category is

composed of the VCG-based mechanisms [6, 8, 21, 28]. They

are vulnerable to Sybil attack, since VCG auction is not Sybil-

proof, as proved in [33]. In the second category, each winner

is paid its critical value, which is based on a certain user’s bid.

All the mechanisms [4, 7, 11, 34, 36] are not Sybil-proof, since

a user can exploit multiple fictitious identities to increase its

critical value, and thus increase its payment. The third category

consists of mechanisms [9, 29, 37, 38] where users are selected

iteratively according to a ratio criterion, and a loser can

become a winner by rigging the criterion value through Sybil

attack. The fourth category consists of mechanisms [30, 31]

where users are selected iteratively according to a linear

criterion, and a user can increase its utility by completing a

subset of its sensing task set. Due to space limitation, we use

examples to show the vulnerabilities to Sybil attack only for

the last two categories.

First, we use MMT [29] as an example from the third

category and show that it is not Sybil-proof in SM case.

MMT selects users iteratively. In each iteration, MMT se-

lects user with the lowest bi/vi(S) value, where vi(S) =
V (

⋃
j∈S∪{j} Γj) − V (

⋃
j∈S Γj) is user i’s marginal value to

the platform given the selected users in S. Besides, MMT is

also an Hk-approximation algorithm in terms of the social

cost, where Hk is the k-th harmonic number, and k is the

largest user task set size. Social cost is the summation of the

true cost of all the selected users. We use the example in Fig. 1

to show that MMT is not Sybil-proof. In this example, squares

represent users, and disks represent tasks. A link between a

user and a task represents that the task is in that user’s task

set. The number above user i denotes its bids for Γi. Since

MMT is truthful, we assume bi = ci(Γi). The number below

task tj denotes its value to the platform. In Fig. 1 (a), we

have U = {1, 2, 3, 4}, T = {t1, t2, t3, t4, t5}, Γ1 = {t1, t5},

Γ2 = {t2, t4, t5}, Γ3 = {t1, t2, t3}, Γ4 = {t3, t4}, b1 = 6,

b2 = 12, b3 = 6, b4 = 7. According to MMT, users 2
and 3 will be selected with the social cost 18. Note that

user 4 is a loser in this case, and thus its utility is 0. Now,

assume user 4 conducts Sybil attack by submitting two bids

β4′ = ({t3}, 1.5)) and β4′′ = ({t4}, 5.5) under identities 4′

and 4′′, respectively, as shown in Fig. 1 (b). In this case, MMT
selects users 1, 3, 4′, and 4′′ with the social cost 19. From this

example, we see that MMT is not Sybil-proof in SM case,

since user 4 could increase its utility through Sybil attack.

Therefore, other mechanisms [7, 34, 38] similar to MMT in

terms of user selection criterion are not Sybil-proof, either.

(a) No Sybil attack

’ ’’

(b) With Sybil attack

Fig. 1. Example showing MMT is not Sybil-proof in SM case

Next, we use MSensing [31] as an example from the fourth

category. MSensing is intentionally designed for SM case

and can be proved Sybil-proof in SM case (see Appendix).

However, it is not Sybil-proof in MM case. MSensing selects

users iteratively. In each iteration, MSensing selects user with

the highest vi(S) − bi value, where vi(S) is the same as

that defined in MMT. Since MSensing is truthful, we assume

bi = ci(Γi). In the example shown in Fig. 2 (a), MSensing
will select users 1, 2, and 3 as winners. In this case, user 4 is



a loser with utility 0. Assume that user 4 conducts Sybil attack

by submitting two bids β4′ = ({t3}, 5) and β4′′ = ({t6}, 2)
under identities 4′ and 4′′, respectively, as shown in Fig. 2 (b).

In this case, MSensing selects users 1, 2 and 4′′. Compared

with the former case, user 4 changes from a loser to a winner,

and thus its utility increases. This example shows that a user

can increase its utility through Sybil attack in MSensing, and

thus MSensing is not Sybil-proof in MM case.

(a) No Sybil attack

4’ 4’’

(b) With Sybil attack

Fig. 2. Example showing MSensing is not Sybil-proof in MM case

C. Desired Properties and Objective

We consider the following important properties:

• Computational Efficiency: A mechanism is computaion-

ally efficient if it terminates in polynomial time.

• Individual Rationality: A mechanism is individually ra-

tional if each user has a non-negative utility when bidding

its true task-cost pair.

• Truthfulness: A mechanism is truthful if any user’s utility

is maximized when bidding its true task-cost pair.

• Sybil-Proofness: A mechanism is Sybil-proof if any user’s

utility is maximized when bidding its true task-cost pair

using a single identity.

In this paper, we aim to design Sybil-proof incentive mech-

anisms (SPIM), which also achieve computational efficiency,

individual rationality and truthfulness.

IV. SPIM-S: SYBIL-PROOF INCENTIVE MECHANISM FOR

SINGLE-MINDED CASE

In this section, we design and analyze SPIM-S, a Sybil-proof

auction-based incentive mechanism for SM case.

A. Design Rationale

In SM case, a user could maximize its utility by splitting

its task set into multiple subsets and submitting these subsets

using multiple identities in the hope that all the identities will

be selected as winners. In order to design Sybil-proof mech-

anisms, we provide a sufficient condition for a mechanism to

be Sybil-proof in the following lemma.

Lemma 1: A mechanism is Sybil-proof if it satisfies the

following two conditions:

1) If any user i pretends two identities i′ and i′′, and both i′

and i′′ are selected as winners, then i should be selected

as a winner while using only one identity;

2) If any user i pretends two identities i′ and i′′, the

payment to i should not be less than the summation

of the payments to i′ and i′′.
Proof: According to the first condition, if any user i

pretends two identities i′ and i′′, and both i′ and i′′ are

selected as winners, then i is a winner with assigned tasks

Ai. According to (1), user i’s utility is ui = pi − ci(Ai).
According to (4), the utility of i through Sybil attack is

ũi = pi′ + pi′′ − ci(Ai). Because of the second condition,

we have pi′ + pi′′ ≤ pi, and thus ũi ≤ ui. Therefore user i
cannot increase its utility through Sybil attack.

The truthfulness of SPIM-S relies on Myerson’s well-known

characterization [17, 22].

Theorem 1: [17, 22] An auction mechanism is truthful iff:

• The selection rule is monotone: If user i wins the auction

by bidding bi, it also wins by bidding b′i ≤ bi;
• Each winner is paid the critical value, which is the smallest

value such that user i would lose the auction if it bids

higher than this value.

In order to satisfy the first condition in Lemma 1, SPIM-S
should select i before i′ and i′′ under the same selection

criterion. To guarantee this, SPIM-S groups users by the size

of their task sets and starts from the group with the largest

task set size. Because the task set size of neither i′ nor i′′ is

greater than that of i, i will be selected before both i′ and

i′′. Following Theorem 1, in each group, SPIM-S selects users

iteratively according to the value of a criterion function, which

is non-decreasing in terms of users’ bids. Besides, the payment

to each winner is its critical value, which also guarantees the

second condition of Lemma 1. The details of the proofs will

be shown in Section IV-C.

B. Design of SPIM-S

In this section, we describe the details of SPIM-S, which is

illustrated in Algorithm 1. At first, SPIM-S groups all users

by the task set size and sorts all the groups in decreasing

order. SPIM-S starts from the group with the largest task set

size. Within each group, SPIM-S calls WPG, as shown in

Algorithm 2, to select winners and calculate their payments.

SPIM-S repeatedly calls WPG until all the tasks are assigned

or all the groups are processed.

As a fundamental part of SPIM-S, WPG consists of two

phases: winner selection and payment determination. The

inputs to WPG are a set R of sensing tasks to be assigned,

a group Gk of users, and a submitted task-bid profile
−→
βk by

users in Gk. The output is a tuple consisting of an assignment

profile
−→Ak, a payment profile −→pk, and a set Tk of assigned tasks

of users in Gk. In the winner selection phase, WPG selects

winners iteratively. Given the set R of unassigned tasks, let

vi(R) = V (R∩Γi) denote the marginal value of user i to the

platform. Let [i] denote the winner selected in the i-th iteration

such that the value of the criterion function QS(v[i](R[i]), b[i])
is the minimum over Gk \ S[i], where

S[i] =

{
{[1], [2], . . . , [i− 1]}, i ≥ 2;

∅, i = 1,

and R[i] = R \ ⋃
j∈S[i]

Γj . Note that we prefer to select

users with higher marginal values but lower bids, and thus

the criterion function QS : R≥0 × R≥0 → R could be any

function that satisfies the following properties:



• QS(x, y) is non-increasing with respect to x;

• QS(x, y) is non-decreasing with respect to y.

This implies that

QS(v[1], b[1]) ≤ QS(v[2], b[2]) ≤ QS(v[3], b[3]) ≤ · · · (6)

For notational simplicity, we use v[i] instead of v[i](R[i]).
In the payment determination phase, WPG computes the

payment pi to each winner i, i.e., Ai 
= ∅. It processes the

users in Gk \{i} similarly to how it selects users in the winner

selection phase. In the j-th iteration, let ij denote the selected

user. WPG uses a payment function PS : R≥0 ×R → R≥0 to

compute the maximum bid, with which user i can be selected

as a winner instead of ij . The payment function PS could be

any function that satisfies the following properties:

• PS(x, y) is non-decreasing with respect to y;

• ∀x, y ∈ R≥0, ∀z ∈ R, if QS(x, y) = z, PS(x, z) = y.

Note that given a value of criterion function QS , the higher

the maximum bid is, the higher the payment should be.

This process repeats until no user’s submitted cost is less

than its marginal value or no user is left in Gk \ {i}. Let

vij = V (Rij ∩ Γij ) denote the marginal value of the j-th

winner to the platform in the payment determination phase,

where Rij is a set of unassigned tasks before ij is selected.

Let K denote the number of iterations of the while-loop in the

payment determination phase of WPG. Therefore, we have

K values, with which user i could have been selected as a

winner in one of the K iterations if i was considered. We set

the payment pi to the maximum of these K values and the

marginal value of i after these K iterations.

Algorithm 1: SPIM-S

Input: Sensing task set T , user set U , bid profile
−→
β ,

criterion function QS and payment function PS .

Output: Assignment profile
−→A and payment profile −→p .

1 R ← T , pi ← 0, Ai ← ∅, ∀i ∈ U ;

2 Group users by the task set size, and sort these groups in

decreasing order G1,G2, . . . ,Gl;

3 k ← 1;

4 while R 
= ∅ and k ≤ l do
5 (

−→Ak,
−→pk, Tk) ← WPG(R,Gk,

−→
βk);

6 R ← R \ Tk;

7 k ← k + 1;

8 end
9 return

−→A and −→p .

C. Analysis of SPIM-S

In this section, we analyze the properties of SPIM-S.

Theorem 2: SPIM-S is computationally efficient, individu-

ally rational, truthful and Sybil-proof in SM case.

We prove this theorem with the following lemmas.

Lemma 2: SPIM-S is computationally efficient.

Proof: The running time of SPIM-S is dominated by the

while-loop (Lines 4-8). Because there are m tasks and each

winner should contribute at least one new task to be selected,

the number of winners is at most m. Thus the while-loop

Algorithm 2: Winner Selection and Payment Determina-

tion in a Group (WPG)

Input: Sensing task set R, user group Gk, bid profile
−→
βk,

criterion function QS and payment function PS .

Output: Assignment profile
−→Ak, payment profile −→pk and

a set of assigned tasks Tk.

// Winner Selection Phase
1 R′ ← R, Tk ← ∅, G′

k ← Gk;

2 i ← argminj∈G′
k
QS(vj(R′), bj);

3 while bi ≤ vi and G′
k 
= ∅ do

4 Ai ← Γi, Tk ← Tk ∪ Γi, R′ ← R′ \ Γi;

5 G′
k ← G′

k \ {i};

6 i ← argminj∈G′
k
QS(vj(R′), bj);

7 end
// Payment Determination Phase

8 foreach i ∈ Gk s.t. Ai 
= ∅ do
9 G′

k ← Gk \ {i}, R′ ← R;

10 ij ← argminj∈G′
k
QS(vj(R′), bj);

11 while G′
k 
= ∅ and R′ 
= ∅ do

12 if bij > vij then break;

13 pi ←
max{pi,min{PS

(
vi(R′), QS(vij(R′),bij)

)
, vi(R′)}};

14 R′ ← R′ \ Γij , G′
k ← G′

k \ {ij};

15 ij ← argminj∈G′
k
QS(vj(R′), bj);

16 end
17 if bi ≤ vi(R′) then pi ← max{pi, vi(R′)};

18 end
19 return (

−→Ak, −→pk, Tk).

will run at most m iterations. The running time of WPG is

dominated by the for-loop (Lines 8-18), which is bounded by

bounded by O(nm3). Because finding the user with minimum

criterion value takes O(nm2) time and the number of winners

is at most m. Therefore, the total computational complexity of

SPIM-S is bounded by O(nm4), since Algorithm 1 will call

WPG at most m times.

Remarks: Note that, the running time of SPIM-S is only

linear in the number of users n. In crowdsensing systems, n
is usually very large, whereas the number of sensing tasks m
is much less than n. Thus SPIM-S is very efficient.

Lemma 3: SPIM-S is individually rational.

Proof: Let [i] denote the winner selected in the i-th
iteration in the winner determination phase of WPG. If [i]
is the last winner in Gk, there is no winner selected in the i-
th iteration in the payment determination phase. According to

Line 17 in Algorithm 2, we have b[i] ≤ v[i] ≤ p[i]. Otherwise,

let [i]i denote the winner selected in the i-th iteration when

processing users in Gk \ {i}. Since user [i]i would not be

selected in the i-th iteration if [i] is considered, according to

(6), we have QS(v
[i]
[i]i

, b[i]) ≤ QS(v[i]i , b[i]i). Thus we have

b[i] = PS(v
[i]
[i]i

, QS(v
[i]
[i]i

, b[i])) ≤ PS(v
[i]
[i]i

, QS(v[i]i , b[i]i)),
where the equality is due to the second property of function

PS , and the inequality is due to the first property of function

PS . We also have b[i] ≤ v[i] = v
[i]
[i]i

, since user [i] is the



winner selected in the i-th iteration. It follows that b[i] ≤
min{PS(v

[i]
[i]i

, QS(v[i]i , b[i]i)), v
[i]
[i]i

} ≤ p[i], where the second

inequality is because of Line 13 in Algorithm 2. Therefore,

u[i] = p[i] − b[i] ≥ 0, and SPIM-S is individually rational.

Lemma 4: SPIM-S is truthful.

Proof: We first prove that user i cannot increase its

utility by submitting a false task set. Then, we prove that

user i cannot increase its utility by submitting a false cost.

We assume that user i submits a false bid β̃i = (Γ̃i, b̃i). If

user i submits a false task set Γ̃i ⊂ Γi, the utility of i is 0
according to (1). On the contrary, if Γi ⊂ Γ̃i, user i will not

be paid because it cannot finish all the tasks in Γ̃i. Therefore,

there is no incentive for i to submit a false task set Γ̃i.

For the truthfulness of the submitted cost, by Theorem 1, it

suffices to prove that the selection rule of SPIM-S is monotone

and the payment to each winner is its critical value. It is

obvious that the selection rule is monotone, since according

to the criterion function QS , the criterion value of a user will

not increase if it bids a smaller value. Next, we prove that the

payment pi to winner i is its critical value. Note that

pi = max

{
max

1≤j≤K

(
PS

(
viij , QS(vij , bij )

))
, vi(RiK+1

)

}
, (7)

where RiK+1
is a set of unassigned tasks after K iterations.

If user i bids bi > pi, we have bi > PS

(
viij , QS(vij , bij )

)
,

which implies QS(v
i
ij
, bij ) < QS(v

i
ij
, bi). Thus i will not be

selected within K iterations. We also have bi > vi(RiK+1
),

thus i will still not be selected after K iterations. Therefore,

pi is the critical value for user i.
Since no user can increase its utility by submitting a false

task-cost pair, SPIM-S is truthful.

Lemma 5: SPIM-S is Sybil-proof.

Proof: To prove SPIM-S is Sybil-proof, we show that

SPIM-S satisfies the sufficient conditions in Lemma 1. Suppose

user i submits (Γi′ , bi′) and (Γi′′ , bi′′) using two fictitious

identities i′ and i′′, respectively.

We first prove that SPIM-S satisfies the fist condition in

Lemma 1. The following discussion is focused on the winner

selection phase of WPG. We assume that both i′ and i′′ are

winners. This implies that Γi′ ⊂ Γi and Γi′′ ⊂ Γi, since

one will make the other lose otherwise. Thus, both i′ and

i′′ will be in the group(s) after i’s group. Let R̃′ and R̃′′

denote the set of unassigned tasks before i′ and i′′ are selected,

respectively. According to SPIM-S, we have vi′(R̃′) ≥ bi′ and

vi′′(R̃′′) ≥ bi′′ , since both i′ and i′′ are winners. In addition,

due to the truthfulness of SPIM-S and the fourth property of the

cost function, we have bi = ci ≤ ci′ +ci′′ = bi′ +bi′′ . Because

Γi = Γi′∪Γi′′ , i will be considered before the group(s), which

i′ and i′′ should belong to. Let R̃ denote the set of unassigned

tasks when i is considered. Therefore we have R̃′ ∪ R̃′′ ⊆
R̃. It follows that vi′(R̃′) ≤ vi′(R̃) and vi′′(R̃′′) ≤ vi′′(R̃),
due to the decreasing property of vi(R). Meanwhile, we have

vi′(R̃) + vi′′(R̃) ≤ vi(R̃), since Γi = Γi′ ∪ Γi′′ . Therefore,

vi(R̃) ≥ vi′(R̃′) + vi′′(R̃′′) ≥ bi′ + bi′′ ≥ bi. This implies

that i is still a winner while using a single identity. Thus the

first condition in Lemma 1 is satisfied.

We next prove that SPIM-S satisfies the second condition

in Lemma 1. The following discussion is focused on the

payment determination phase of WPG. Since i is still a winner

while using one identity, let R̃i denote the set of unassigned

tasks before i is selected. Let R̃i′ and R̃i′′ denote the set of

unassigned tasks before i′ and i′′ are selected, respectively.

In addition, there is no user in i’s group can make i lose,

i.e., bi > vi(R̃i), otherwise neither i′ nor i′′ can be a winner.

Therefore, the payment to i is at least vi(RiK+1
) according

to (7). Recall that K is the number of iterations of the while-

loop in the payment determination phase of WPG. In any

iteration r ≤ K, we have bir ≤ vir . Due to the properties of

functions PS and QS and the decreasing property of vi(R),
we have min{PS(v

i
ir
, QS(vir , bir )), v

i
ir
} ≤ viir ≤ vi(R̃i).

After K iterations, vi(RiK+1
) ≤ vi(R̃i), due to the decreasing

property of vi(R). Thus it follows that pi ≤ vi(R̃i). Similarly,

we have pi′ ≤ vi′(R̃i′) and pi′′ ≤ vi′′(R̃i′′). Let RiK+1

denote the set of unassigned tasks after K iterations. Since

Γi = Γi′ ∪ Γi′′ , R̃i′ ⊆ RiK+1
and R̃i′′ ⊆ RiK+1

, we have

vi′(R̃i′)+vi′′(R̃i′′) ≤ vi′(RiK+1
)+vi′′(RiK+1

) ≤ vi(RiK+1
).

Thus, we have pi ≥ vi(RiK+1
) ≥ vi′(R̃i′) + vi′′(R̃i′′) ≥

pi′+pi′′ . Hence, the second condition in Lemma 1 is satisfied.

Therefore, SPIM-S is Sybil-proof according to Lemma 1.

We can use a similar proof for the case where a user pretends

more than two identities.

V. SPIM-M: SYBIL-PROOF INCENTIVE MECHANISM FOR

MULTI-MINDED CASE

In this section, we design and analyze SPIM-M, a Sybil-

proof auction-based incentive mechanism for MM case.

A. Design Rationale

In MM case, a user is willing to perform any subset of its

task set, and tries to maximize its utility by submitting multiple

task-cost pairs using fictitious identities. We design SPIM-M
based on the characterization of Sybil-proof mechanisms

in [32]. SPIM-M guarantees that the utility of a user is not

less than its utility while using multiple identities. To achieve

this, SPIM-M first calculates the payments to each user for any

subset of its task set. The payment is determined independently

of its own cost function. At last, SPIM-M assigns each user a

subset of its task set that maximizes its utility independently

of the assignments to other users.

B. Design of SPIM-M

In this section, we elaborate SPIM-M, as illustrated in

Algorithm 3.

At first, SPIM-M uses a payment function PM (x, y) = x−
max{0, y} to calculate the payment pi,B to user i for any

bundle B ⊆ Γi. PM is based on the value of the criterion

function QM (V (B), cj(B)), where QM (x, y) = x− y, V (B)
is the value of bundle B to the platform, and cj(B) is the cost

of bundle B to any user j ∈ U \ {i}. Note that, user i will

only be assigned a bundle B ⊆ Γi, since ci({tj}) = ∞ for



Algorithm 3: SPIM-M

Input: Sensing task set T , user set U , bid profile
−→
β ,

criterion function QM and payment function PM .

Output: Assignment profile
−→A and payment profile −→p .

1 foreach i ∈ U do
2 Calculate the payment to i for any bundle B ⊆ Γi,

pi,B ←
PM

(
V (B),maxj �=i,B′⊆Γj ,B′∩B�=∅ QM (V (B′), cj(B′))

)
;

3 end
4 foreach i ∈ U do
5 Ai ← argmaxB⊆Γi(pi,B − ci(B));
6 pi ← pi,Ai ;

7 end
8 return

−→A and −→p .

any task tj ∈ T \ Γi. Note that the payment to user i for any

bundle B ⊆ Γi is independent of its cost function ci(·), i.e.,

pi,B = V (B)−max{0, max
j �=i,B′⊆Γj ,B′∩B�=∅

(V (B′)−cj(B′))}. (8)

At last, SPIM-M will assign each user i a set Ai of tasks,

which is a bundle B ⊆ Γi maximizing its utility based on the

calculated payment, i.e.,

Ai = arg max
B⊆Γi

(pi,B − ci(B)). (9)

SPIM-M gives each user i a payment pi = pi,Ai
. Note that

pi = pi,Ai = 0, if Ai = ∅.

C. Analysis of SPIM-M

In this section, we analyze the properties of SPIM-M.

Theorem 3: SPIM-M is individually rational, truthful and

Sybil-proof in MM case.

We prove this theorem with the following lemmas.

Lemma 6: SPIM-M is individually rational.

Proof: According to (9), any user i is assigned a bundle

Ai, which is a subset of Γi maximizing i’s utility. Since pi,∅ =
0 and ci(∅) = 0, the utility of any user i is non-negative

according to (2). Thus SPIM-M is individually rational.

Lemma 7: SPIM-M is truthful.

Proof: We first prove that user i cannot increase its utility

by submitting a false task set. Then, we prove that user i
cannot increase its utility by submitting a false cost function.

We assume that user i submits a false bid β̃i = (Γ̃i, c̃i(·)).
According to (8), the payment to i for any bundle B ⊆ Γi is

calculated independently of i’s cost function. If Γ̃i ⊂ Γi, the

payment to i for any subset of Γ̃i is the same as that when i
submits Γi. Meanwhile, according to (9), SPIM-M will assign

i a bundle Ai, which maximizes i’s utility. Therefore, user

i cannot increase its utility by submitting Γ̃i ⊂ Γi. On the

contrary, if Γi ⊂ Γ̃i, user i cannot finish the assigned tasks

in Ai \ Γi 
= ∅, because of the second property of the cost

function. It follows that pi = 0 in this case. Hence there is no

incentive for i to submit a false task set Γ̃i.

Furthermore, the false cost function c̃i(·) can only affect

the result of (9). Let Ãi and Ai denote the bundles assigned

to i when i submits the false cost function c̃i(·) and the true

cost function ci(·), respectively. It is obvious that the utility

of i will not change if Ãi = Ai. On the contrary, if Ãi 
= Ai,

according to i’s true cost function, we have pi,Ãi
− ci(Ãi) ≤

pi,Ai
− ci(Ai). This is due to the fact that both Ai and Ãi are

the subset of Γi, and Ai is the bundle maximizing i’s utility.

Therefore, user i cannot increase its utility by submitting a

false cost function c̃i(·). Thus SPIM-M is truthful.

Lemma 8: SPIM-M is Sybil-proof.

Proof: We assume that user i pretends two identities

i′ and i′′, and both i′ and i′′ are assigned Ai′ and Ai′′ ,

respectively. Let mi′ denote maxj �=i′,B′⊆Γj ,B′∩Ai′ �=∅(V (B′)−
cj(B′)), and mi′′ denote maxj �=i′′,B′′⊆Γj ,B′′∩Ai′′ �=∅(V (B′′)−
cj(B′′)). According to (8), the payments to i′ and i′′ are

pi′,Ai′ = V (Ai′)−max {0,mi′} ,
pi′′,Ai′′ = V (Ai′′)−max {0,mi′′} .

If i is assigned a set Ai = Ai′ ∪ Ai′′ of tasks while using a

single identity, the payment to i is

pi,Ai = V (Ai)−max

{
0, max

j �=i,B⊆Γj ,B∩Ai �=∅
(V (B)− cj(B))

}
.

Since Ai = Ai′ ∪ Ai′′ , we know that

{B|j 
= i,B ⊆ Γj ,B ∩ Ai 
= ∅}
= {B′|j 
= i′,B′ ⊆ Γj ,B′ ∩ Ai′ 
= ∅}

∪ {B′′|j 
= i′′,B′′ ⊆ Γj ,B′′ ∩ Ai′′ 
= ∅}.
Let mi denote maxj �=i,B⊆Γj ,B∩Ai �=∅(V (B)−cj(B)). Thus we

have mi = max{mi′ ,mi′′} and mi ≤ mi′ +mi′′ . In addition,

we can prove that Ai′ ∩ Ai′′ = ∅ by contradiction. Assume

Ai′ ∩ Ai′′ 
= ∅, the payments to i′ is

pi′,Ai′ =V (Ai′)−max{0,mi′}≤V (Ai′)−(V (Ai′′)−ci(Ai′′)),

where the inequality is due to the fact V (Ai′′) − ci(Ai′′) ≤
mi′ , since Ai′′ is in {B′|j 
= i′,B′ ⊆ Γj ,B′ ∩ Ai′ 
= ∅}.

Similarly, we have pi′′,Ai′′ ≤ V (Ai′′) − (V (Ai′) − ci(Ai′)).
Therefore the summation of the utilities of i′ and i′′ is

ui′ + ui′′ = pi′,Ai′ − ci(Ai′) + pi′′,Ai′′ − ci(Ai′′)

≤ V (Ai′)− (V (Ai′′)− ci(Ai′′))− ci(Ai′)

+ V (Ai′′)− (V (Ai′)− ci(Ai′))− ci(Ai′′) = 0.

Since SPIM-M is individually rational, it follows that Ai′ =
Ai′′ = ∅, which contradicts the assumption. Thus Ai′ ∩Ai′′ =
∅. We also have V (Ai) = V (Ai′ ∪Ai′′) = V (Ai′)+V (Ai′′),
since Ai = Ai′ ∪ Ai′′ . According to (8), the payment to i is

pi,Ai
= V (Ai)−max{0,mi}
≥ V (Ai)− (mi′ +mi′′)

= V (Ai′ ∪ Ai′′)− (mi′ +mi′′)

= V (Ai′)−mi′ + V (Ai′′)−mi′′

≥ pi′,Ai′ + pi′′,Ai′′ .

This implies that if a user pretends two identities and is

assigned tasks separately, its payment will not increase. Due

to the fourth property of the cost function, we have ci(Ai) ≤
ci(Ai′)+ci(Ai′′), since Ai = Ai′∪Ai′′ . Therefore, according

to (2) and (5), the utility of i when using two identities is not

greater than that obtained by using a single identity.

Thus SPIM-M is Sybil-proof.



Remarks: From the proof in Lemma 8, we can also prove

Ai ∩ Aj = ∅ for any i, j ∈ U , i 
= j. In addition, the time

complexity is O(n · 2|Γmax|), where n is the number of users,

and |Γmax| is the largest user task set size, since SPIM-M
will calculate the payments to each user for every subset of

its task set. In practice, the execution time of SPIM-M is still

reasonable, as shown in Section VI, since the number of tasks

each user can perform is limited by some constraints, e.g.,

travel budget [19], and thus very small.

VI. PERFORMANCE EVALUATION

In this section, we compare the performances of SPIM-S and

SPIM-M with MMT and MSensing. Specifically, we implement

SPIM-S with the same criterion and payment function as in

MMT [29], i.e., QS(x, y) = y/x and PS(x, y) = xy. Note

that the criterion of SPIM-M is the same as in MSensing [31].

The performance metrics are running time, total payment, and

platform utility.

A. Evaluation Setup
We use a real data set for evaluation. It consists of the traces

of 320 taxi drivers, who work in the center of Rome [3]. Each

trace is represented by a sequence of locations. Each taxi driver

has a tablet, which periodically retrieves the GPS locations

and sends them with the corresponding driver ID to a server.

The mobility pattern of taxi traces can be used to depict the

mobility of smartphone users as in [29].
We consider a crowdsensing system where the tasks are to

measure the Wi-Fi signal strength at specific locations. Each

user can sense the Wi-Fi signal strength within 30 meters from

its location. Tasks are represented by GPS locations reported

by taxis. We assume that all drivers are willing to participate

in the crowdsensing system. We preprocess the tasks such that

each task can be sensed by at least two users to prevent the

monopoly and guarantee the quality of sensing task.
In our evaluation, we randomly select locations on taxi

drivers’ traces as the sensing tasks. We assume the value

of each task is uniformly distributed over [1, 5], and users’

cost for each task is uniformly distributed over [1, 10]. To

evaluate the impact of the number of sensing tasks (m) on

the performance metrics, we fix the number of users (n) at

200 and vary m from 20 to 60 with a step of 10. To evaluate

the impact of the number of users on the performance metrics,

we fix m at 150 and vary n from 100 to 300 with a step of

50. All the results are averaged over 1000 independent runs.

B. Evaluation of Running Time
Fig. 3 shows the impacts of m and n on the running time.

We see that the running time of SPIM-S, SPIM-M, MMT, and

MSensing all increase with the increase of m and n. In both

Fig. 3 (a) and Fig. 3 (b), the running time of SPIM-M is more

than that of SPIM-S, MMT, and MSensing. This is because

SPIM-M calculates the payment to each user for every subset

of its task set. In addition, the running time of SPIM-S is less

than that of MMT, though they use the same criterion. This is

because SPIM-S starts from the group with the largest task set

size, and thus may finish assigning tasks earlier than MMT.
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Fig. 3. Running time

C. Evaluation of Total Payment

Fig. 4 plots the impacts of m and n on the total payment to

users. In Fig. 4 (a), we see that the total payment of SPIM-S,

SPIM-M, MMT, and MSensing both increase with the increase

of m. This is because, with more tasks, the platform may

select more users to perform the tasks, which incurs a higher

payment. In Fig. 4 (b), we observe that the total payments of

SPIM-M and MMT decrease with the increase of n. This is

because, with more users, the platform may find more low-cost

users to perform the tasks. Note that the total payment of MMT
is larger than those of others. The reason is that MMT selects

a user as long as its marginal value is nonzero, and thus may

select more users incurring a higher payment. In addition, the

total payments of SPIM-S and MSensing all increase slightly

with the increase of n. This is because, with more users,

SPIM-S and MSensing can assign more tasks, which incurs

a higher payment.

(a) Impact of m (b) Impact of n

Fig. 4. Total payment

D. Evaluation of Platform Utility

Fig. 5 shows the impacts of m and n on the platform utility.

Note that the y-axis in Fig. 5 (b) is log-scaled. The platform

utility of MMT is negative, and thus omitted from Fig. 5.

The reason is MMT will select a user as long as its marginal

value to the platform is not zero, which may make the total

payment to users higher than the total value to the platform. In

both Fig. 5 (a) and Fig. 5 (b), we see that the platform utility

achieved by SPIM-M is larger than those achieved by SPIM-S
and MSensing. This is because SPIM-M assigns each task to

at most one user, and thus avoids paying users to perform

duplicated tasks. This advantage is amplified with large m.
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VII. CONCLUSION

In this paper, we proposed two Sybil-proof auction-based

incentive mechanisms for crowdsensing. We designed SPIM-S
and SPIM-M for single-minded case and multi-minded case,

respectively. Specifically, SPIM-S achieves computational effi-

ciency, individual rationality, truthfulness and Sybil-proveness.

SPIM-M achieves individual rationality, truthfulness and Sybil-

proveness. We rigorously proved the desired properties of the

mechanisms and validated them through simulations.

APPENDIX

Theorem 4: MSensing is Sybil-proof in SM case.

Proof: We prove that MSensing satisfies the conditions

in Lemma 1. Suppose a user i pretends two identities i′

and i′′ and submits (Γi′ , bi′) and (Γi′′ , bi′′), respectively. We

assume i′ and i′′ are winners and get payments pi′ and pi′′ ,
respectively. Let vi′ and vi′′ denote the marginal value of

i′ and i′′ to the platform when they are selected. Let Si′

denote the winners after i′ is selected. Since MSensing is

truthful, we have bi = ci. In addition, we have bi′ ≤ vi′

and bi′′ ≤ vi′′ , since both i′ and i′′ are winners. Because

Γi = Γi′ ∪ Γi′′ , we have vii′ ≥ vi′ + vi′′ , where vii′ is user i’s
marginal value in the iteration where i′ is selected. It implies

that vii′ ≥ bi′ + bi′′ = ci′ + ci′′ ≥ ci = bi. Meanwhile, vi′ − bi′

is maximum over U \ Si′ since i′ is a winners. Therefore,

vii′ − bi ≥ (vi′ + vi′′)− (bi′ + bi′′) ≥ vi′ − bi′ . Thus, i would

have been selected as the winner in the iteration where i′ is

selected, if i used one identity. This satisfies the first condition

in Lemma 1. We next prove that MSensing satisfies the second

condition in Lemma 1. First, we know that i will be selected as

a winner no later than the iteration where i′ is selected, while

using one identity. In addition, we can use the same method,

as in Lemma 5, to prove that pi ≥ pi′ + pi′′ in MSensing.

Thus MSensing is Sybil-proof in SM case.
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