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Abstract—With the rich sensing capacity and ubiquitous usage
of smartphones, crowdsensing leveraging the power of the crowd
of mobile users has become an effective technique to collect
data for various sensing applications. Many incentive mecha-
nisms have been proposed to encourage people to participate in
crowdsensing. However, most of them set unchangeable rewards
for sensing tasks, while the inherent inequality and on-demand
feature of sensing tasks have been long ignored, especially for
location-dependent sensing tasks. In this paper, we focus on
location-dependent crowdsensing systems and propose a demand-
based dynamic incentive mechanism that dynamically changes
the rewards of sensing tasks at each sensing round in an on-
demand way to balance their popularity. A demand indicator
is introduced to characterize the demand of each sensing task
by considering its deadline, completing progress, and number
of potential participants. At each sensing round, we use the
Analytic Hierarchy Process to calculate the relative demands of
all sensing tasks and then determine their rewards accordingly.
Moreover, we prove that the distributed task selection problem
with time budget is NP-hard. We propose an optimal dynamic
programming based solution and a greedy solution to help
each user select tasks while maximizing its profit. Extensive
experiments show that the demand-based dynamic incentive
mechanism outperforms existing incentive mechanisms.

I. INTRODUCTION

With the rapid development of technology, mobile devices

(e.g., smartphones) become more and more powerful in sens-

ing as they are equipped with a rich set of embedded sensors

(e.g., camera, microphone, accelerator, GPS, and compass).

Nowadays a mobile user carrying a mobile device is not only

a human but has become a powerful mobile sensing platform

that can sense environments as well as people’s behaviors.

This fact has benefited the emergence of mobile crowdsensing

systems, such as Waze, which leverage the power of large

number of mobile users to collect data for sensing applications

instead of using traditional sensors. A typical crowdsensing

system [1] consists of a cloud server and a large number

of mobile users where the cloud server publishes sensing

tasks and mobile users use their mobile devices to collect

sensing data to complete the published tasks. Thanks to

∗Qian Wang is the corresponding author.

the mobility of mobile users and the popularity of mobile

devices, crowdsensing has become an effective technique to

collect massive data for lots of sensing applications, and it

is especially suitable for user-centric and location-dependent

sensing applications.

Recently several location-dependent sensing applications

have adopted crowdsensing to collect massive data, such as air

quality monitoring [2], wifi signal map construction [3], traffic

condition monitoring [4], and noise pollution assessment [5],

[6]. The sensing tasks are location dependent where each

task should be performed at a specific location and requires

mobile users to contribute the location related sensing data to

complete the task. Since the quality of sensing data varies from

person to person, multiple users are expected to contribute

their sensing data to improve the quality of completing a task.

When mobile users contribute sensing data in crowdsens-

ing, they spend not only time but also physical resources

to complete sensing tasks. Without an appropriate incentive,

mobile users may not be willing to participate in crowdsensing.

Moreover, the privacy leakage concern from privacy sensitive

mobile users further prevents users from contributing sensing

data. Recently many work have been focused on the incentive

mechanism design to improve the willingness of mobile users

to participate in crowdsensing. Some of them are game-

theoretic incentive mechanisms that allocate tasks to mobile

users with the objective of maximizing the social surplus [7]–

[11]. Some of them are quality-orientated incentive mecha-

nisms designed to improve the quality of sensing data [12]–

[15]. Moreover, with the rapid development of mobile devices,

incentive mechanisms for location-dependent crowdsensing

systems are proposed in [13], [15]–[20].

It is worth noting that most of existing incentive mecha-

nisms set unchangeable/fixed rewards for sensing tasks, al-

though different rewards may be given to different tasks,

where the reward of a sensing task does not change once

it is initially determined. This however is not suitable for

location-dependent crowdsensing systems since the location

becomes another import factor besides the reward influencing

the decision of users to perform a sensing task or not. In this
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paper, we argue that there exists inherent inequality among

location-dependent sensing tasks and the demands of tasks for

participants dynamically change as time goes on. In general,

mobile users prefer to perform close tasks with high rewards,

while far away tasks with low rewards will be ignored. That is,

the location difference results in popularity difference of tasks

to participants. Hence, the popularity of a task is inherently

determined from the beginning by its location and its initial

reward in fixed incentive mechanisms, which leads to a low

coverage issue that only popular tasks can be completed

while unpopular location-dependent sensing tasks cannot be

completed on time. This problem motivates us to design a

dynamic incentive mechanism that dynamically changes the

reward of each sensing task based on the real-time demands

of tasks to balance the popularity of sensing tasks so that even

far away tasks can also be completed before their deadlines.

Note that some dynamic incentive mechanisms [11] [13]

[15]are also proposed. In [11], the authors proposed a re-

verse auction-based dynamic pricing incentive mechanism for

participatory sensing to maintain adequate level of partici-

pants, which however does not take location difference and

demand difference into consideration. Guo et al. proposed

a quality-oriented dynamic incentive mechanism that sets

different/dynamic budget value for each sensing task according

to the spatio-temporal popularity level [15]. However, the pro-

posed incentive mechanism focuses on one-shot sensing tasks.

Although the budget of each task is different from another, it

would not change once initially determined. Therefore, it can

be considered as a fixed incentive mechanism with different

budgets for each task. Kawajiri et al. [13] proposed a steered

incentive mechanism which changes points (rewards) in every

session to improve the quality of service rather than data size.

However, the point decreases as the time goes on, which results

in less and less engagement of participants. Moreover, this

paper did not take the deadline difference of sensing tasks

into consideration.

In this paper, we focus on location-dependent crowdsensing

systems with the Worker Selected Tasks (WST) mode. In

contrast to the Server Assigned Tasks (SAT) mode, the WST

mode are commonly used by many popular crowdsensing

applications, such as Gigwalk and FieldAgent. Instead of

allocating tasks to mobile users by the server in a centralized

way, it is more practical that mobile users select tasks in a

distributed way. In our system, the server only needs to publish

tasks with rewards at each sensing round, and then mobile

users select a set of tasks to be performed according to their

cost and time budget. Note that the complicated negotiation

process can be avoided between the server and mobile users.

We propose a demand-based dynamic incentive mechanism

and distributed task selection algorithms to encourage mobile

users to participate in crowdsensing. Instead of using a fixed

reward for a task all the time, we argue that the reward

should be paid on-demand and changes dynamically at each

sensing round. Intuitively, the closer to the deadline or the

smaller completing progress or the less mobile users around

a task, the larger reward is expected to improve the task’s

popularity and attraction. Thus, we introduce the demand

indicator to characterize the demand of each sensing task

which takes several factors into consideration, such as the

deadline, the completing progress and the number of potential

participants of a sensing task. At each sensing round, the

Analytic Hierarchy Process is adopted to model and calculate

the relative demands of all sensing tasks and then their rewards

can be determined accordingly.

The main contributions of this paper are summarized as

follows.

• We propose a demand-based dynamic incentive mech-

anism for location-dependent crowdsensing systems,

which provides a concrete guideline on how to dynami-

cally change the reward of each sensing task according

to its real-time demand.

• We propose a demand indicator to characterize the de-

mand of each sensing task by taking important factors

into consideration, and adopt the Analytic Hierarchy

Process to model and calculate the relative demands of

all sensing tasks.

• We prove that the distributed task selection problem

is NP-hard. To solve this problem, we first propose

an optimal dynamic programming solution, and further

propose an efficiently greedy solution to help mobile

users select appropriate set of tasks while maximizing

their profits at each sensing round.

• We conduct extensive experiments to compare the pro-

posed demand-based dynamic incentive mechanism with

existing incentive mechanisms. The experimental results

show that the proposed mechanism achieves better par-

ticipation and participation balance among tasks.

The remainder of this paper is organized as follows. We

present the system overview and describe the task selection

and incentive design problems in Section III. We present the

demand-based dynamic incentive mechanism in Section IV,

and the distributed task selection algorithms in Section V. We

evaluate the performance of the proposed algorithms in Section

VI and finally conclude the paper in Section VII.

II. RELATED WORK

With a rich set of embedded sensors [21] [22], location-

dependent incentive mechanisms have received great attention

in recent years. In [23], the authors classified the location-

dependent crowdsensing problem into two modes: Worker

Selected Tasks (WST) and Server Assigned Tasks (SAT).

For the SAT mode, the server has the global information

of the tasks as well as mobile users and the auction-based

mechanisms are usually used to assign tasks to mobile users.

Lee et al. [24] applied reverse auctions in the economic

field to the research of crowdsensing incentive mechanisms,

which ensured the relatively high participation of users while

minimizing the payment cost. Feng et al. [17] designed a

truthful mechanism that used reverse combinatorial auction

model to motivate the participants. Krontiris et al. [25] used the

multi-attribute auction mechanism in reverse auction, which

not only considered the participation rate of users, but also
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Fig. 1. The architecture of crowdsensing systems with the dynamic incentive
mechanism

took account of the quality of sensing data. In [26], a full-

pay auction method was proposed to motivate participants

to participate in, of which only the bidder that contributes

mostly can get the payoff. Yang et al. [27] used double auction

mechanism to motivate participants to join the K anonymity

of location-sensitive. In [18], the VCG auction mechanism

was adopted and the updating rule was introduced aiming at

the online crowdsensing incentive mechanism, the objection

of which was to maximize the social welfare benefits.

In the WST mode, mobile users can select any tasks without

contacting with the server. Although it is difficult to achieve

the objective of maximization in the WST mode, it’s actually

the typical mode in some popular crowdsensing system such

as Gigwalk, Amazon Mechanical Turk, and Field Agent.

Moreover, Kawajiri et al. [13] proposed steered crowdsensing,

which controls the incentives of users by using the game ele-

ments on location-based services. In [28], the authors proposed

an asynchronous and distributed task selection algorithm to

help workers find a best schedule. Mobile users can submit

less personal information compared to the SAT mode, which

can improve the participation of mobile users. Furthermore,

the procedure of the WST mode is more concise than the SAT

mode. However, one drawback of this mode is that the server

does not have any control over the allocation of sensing tasks.

This may result that some sensing tasks cannot be completed,

while others are completed redundantly.

In this paper, we focus on the WST mode and propose a

demand-based dynamic incentive mechanism that dynamically

changes the rewards of sensing tasks in an on-demand way for

location-dependent crowdsensing systems.

III. SYSTEM OVERVIEW AND PROBLEM STATEMENT

In this section, we first present the high-level overview of

location-dependent crowdsensing systems with the dynamic

incentive mechanism, and then describe the location-dependent

dynamic incentive design problem and the distributed task

selection problem.

A. System Overview

We consider the location-dependent crowdsensing applica-

tions which leverage the power of the crowd to collect massive

sensing data. In particular, we take the noise pollution as-

sessment as an example for crowdsensing applications, which

aims to provide the accurate noise pollution levels of different

regions in a city to the public. It is expensive and time-

consuming to deploy specific equipments to measure noise

pollution levels considering the large-scale of a city. Even

the equipments are deployed, they can only provide a coarse-

grained noise measurement of the city. In contrast, we can use

the idea of crowdsensing that leverages the power of the crowd

to realize cheap and fine-grained noise measurements. Each

participant can use its mobile device to measure the noise, so

there is no need to deploy expensive and specific equipments.

The participants can move to the specified places to make

quick and convenient measurements, which can realize fine-

grained noise measurements.

Figure 1 shows the architecture of crowdsensing systems

with the proposed dynamic incentive mechanism. The platform

publishes a set of sensing tasks to mobile users and provides

rewards for tasks to incentivize mobile users to accomplish

tasks. Different from crowdsensing systems with the SAT

mode, each mobile user in our crowdsensing systems with the

WST mode does not need to send its bid to the platform to

compete tasks. Instead, a mobile user can select a set of tasks

to perform in a distributed way according to its time budget

and cost consumption. We assume all mobile users are rational

so they would not perform a task if the cost spent is larger

than the gained reward or the time budget is not satisfied.

In this paper, we propose a novel demand-based dynam-

ic incentive mechanism for location-dependent crowdsensing

systems. As shown in Figure 1, the data collection process is

divided into multiple sensing rounds. At each sensing round,

mobile users select tasks, perform the selected tasks and

upload the sensing data to the platform. The platform collects

the sensing data and calculates the demands of all sensing

tasks. In the next sensing round, the platform updates the

reward for each sensing task and publishes the tasks with

updated rewards to the mobile users. The task selection process

for each mobile user and the rewards update process on the

platform continues repeatedly until all the tasks are completed.

After receiving the sensing data of a task from mobile users,

the platform aggregates the sensing data to make an estimate.

If all the sensing data are from the same mobile user, the

estimate may be biased or cannot be trusted. In order to

guarantee the sensing quality of each task, we assume that

each task requires independent sensing measurements from

multiple mobile users.

B. Location-dependent Dynamic Incentive Problem

The platform expects each sensing task to be completed

before its deadline, and provides rewards to encourage mobile

users to participate in mobile crowdsensing. We assume the

platform has a total budget B for all the sensing tasks, and the

total rewards paid to mobile users cannot exceed B. However,
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existing incentive mechanisms mainly apply unchangeable

rewards for sensing tasks, which have several drawbacks. First,

it is difficult or impossible to decide the optimal reward for

each sensing task. If the rewards are set too high, the platform

is harmed as its welfare is small or be negative, while if the

rewards are set too small, there may not be enough participants

to complete sensing tasks. Second, it may lead to the problem

that some sensing tasks cannot be completed before their

deadlines. It is possible that some sensing tasks are not popular

to mobile users because they are in remote places or their

rewards are small. The popularity cannot be changed if the

rewards are fixed, and therefore these sensing tasks cannot be

completed on time.

To solve these issues, we propose to dynamically change

the reward of each sensing task to balance the popularity of

sensing tasks in an on-demand way. Generally speaking, the

dynamic incentive mechanism needs to satisfy two objectives.

First, each location-dependent sensing task should be com-

pleted before its deadline. Second, the welfare of the platform

should be as large as possible. Therefore, the problem is how

to characterize the demand of location-dependent sensing tasks

and dynamically change the rewards of sensing tasks to realize

these two objectives. We call the problem as the location-

dependent dynamic incentive problem.

C. Location-dependent Task Selection Problem

At each sensing round, the platform publishes a set of

sensing tasks with rewards to mobile users, and each mobile

user can choose to perform a set of tasks according to its

time budget and cost consumption. Let T = {t1, t2, . . . , tm}
denote the set of sensing tasks where ti denote the ith task. Let

U = {u1, u2 . . . , un} denote the set of mobile users where ui

is the ith mobile user. Each sensing task is location-dependent

which means that each sensing task ti is associated with a

specific location Lti . We also assume that each sensing task

ti is associated with a deadline Dti that the task is expected

to be completed before the deadline. Each task ti requires ϕi

mobile users to contribute sensing data and each mobile user

contributes sensing data to each sensing task ti at most once.

The reward of a sensing task changes at each round. We use

rkti to denote the reward of task ti at the kth round.

Since sensing tasks are location-dependent, a mobile user

has to travel multiple locations to perform multiple sensing

tasks. At each sensing round, a mobile user is assumed to

have a time budget to perform tasks. Let T k
ui

denote the set

of tasks chosen by user ui and Bk
ui

denote the time budget

of user ui at the kth round. The time spent for completing

multiple tasks is comprised of two parts: the time for traveling

multiple locations associated with the selected tasks, and the

time for data sensing at each location. Usually the latter is

negligible compared to the former. Thus, we let the time spent

for completing multiple tasks to be the time spent for traveling

multiple locations associated with the selected tasks, denoted

by ΓT k
ui

. Since each mobile user has a time budget, ΓT k
ui

should be no larger than Bk
ui

.

At the kth sensing round, the task selection problem for the

mobile user ui can be formulated as follows:

max P (T k
ui
) =

∑
tj∈Tk

ui

rktj − C(T k
ui
)

s.t. ΓT k
ui
≤ Bk

ui

(1)

where rktj denotes the reward of task tj at the kth round,

and C(T k
ui
) denotes the minimum cost spent to perform

the set of tasks T k
ui

, which is proportional to the minimum

traveling distance from the original location of mobile user

ui to all the locations of tasks in T k
ui

. P (T k
ui
) denotes the

total profit received by ui for performing tasks in T k
ui

, which

is the difference between the total rewards received by ui

(
∑

tj∈T k
ui

rktj ) and the minimum cost (C(T k
ui
)).

As presented in Eq. 1, the objective of the task selection

problem for ui at the kth round is to maximize its total

profit, while the constraint indicates that the total traveling

time should be no larger than user’s time budget.

IV. DEMAND-BASED DYNAMIC INCENTIVE MECHANISM

At each sensing round, each mobile user chooses a set of

tasks and reports its sensing results to the platform. Therefore,

the platform is aware of the completing progress of all tasks at

the end of each sensing round. The basic idea of our algorithm

is to dynamically change the reward of each task based on the

demand of each task.

We introduce a demand indicator to characterize the de-

mand of each location-dependent sensing task. Let Dk =
(dk1 , d

k
2 , . . . , d

k
n) denote the demands of all sensing tasks at

the kth sensing round, where dki denotes the demand of

the ith task at the kth round. The demand of a task can

be determined by many factors, such as the deadline, the

completing progress and the number of neighboring mobile

users of a task. The user whose distances is less than R meters

to a task is called a neighboring user of the task. Intuitively, the

closer to the deadline, the larger the demand; the smaller the

completing progress, the larger the demand; the less number

of neighboring mobile users of a task, the larger the demand.

Thus, we use the three factors to determine the demand of a

task ti.

dki = w1X
k
i1 + w2X

k
i2 + w3X

k
i3 (2)

where Xk
i1

, Xk
i2

and Xk
i3

represent the demands affected by

the deadline, the completing progress, and the number of

neighboring mobile users for task ti, respectively. w1, w2 and

w3 are the weights to measure the relative importance of these

three factors and we let w1 + w2 + w3 = 1.

In our system, the rewards are given according to the

demands. The higher the demand, the higher the reward.

However, the absolute value of a demand actually does not

have too much meaning, but instead the comparison of the

demands of all sensing tasks are more important. This will

help us use appropriate rewards to balance the popularity of

sensing tasks. The Analytic Hierarchy Process (AHP) [29] is
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an effective model that combines qualitative and quantitative

information to determine the relative ranking of alternatives

(e.g., sensing tasks), and the ranking of criteria (e.g., three

factors), which is a perfect model for our dynamic incentive

problem.

Figure 2 shows the framework for our problem consisting of

three levels, the alternative level, the criteria level and the goal

level. The alternatives are the sensing tasks. The criteria are

the demands of the deadline, the completing progress and the

number of neighboring mobile users. The goal is to calculate

the demands of all sensing tasks. In the following, we first

quantify the demands of the three factors and use the AHP

framework to calculate the demands of sensing tasks.

A. Demands of Three Factors

Demand affected by the deadline: Each sensing task

is associated with a deadline and the required number of

measurements are expected to be received before the deadline.

The closer to the deadline, the higher demand will be required.

Moreover, the closer to the deadline, the faster the growth rate

of demand will be required. Therefore, the demand affected

by the deadline is represented as follows:

Xk
i1 = λ1 ln(1 +

1

τi − (k − 1)
) (3)

where τi is the deadline of task ti, λ1 is a coefficient that scales

the value of the demand affected by the deadline. We can

see that the demand Xk
i1

increases as the round k approaches

to the deadline of task ti and is upper bounded by λ1 ln 2.

Furthermore, the growth rate of demand Xk
i1

increases as the

round k approaches to the deadline.

Demand affected by the completing progress: The com-

pleting progress is another factor that can affect the demand

of a task, which is defined as πi/ϕi where πi the number

of received measurements and ϕi is the required number of

measurements of task ti. The larger the completing progress,

the smaller demand will be required. Moreover, the larger the

completing progress, the faster the reduction rate of demand

will be required. Therefore, we have

Xk
i2 = λ2 ln(1 + (1− πi

ϕi
)) (4)

where λ2 is a coefficient that scales the value of the demand

affected by the completing progress. We can see that the

demand decreases as the completing progress increases and

is lower bounded by 0. Furthermore, the reduction rate of

demand Xk
i2

increases as the completing progress approaches

to 1.

Demand affected by the number of neighboring mobile
users: Some tasks are surrounded by many mobile users, while

some tasks are at far away locations with few neighboring

mobile users. Mobile users would not select far away tasks

only if high rewards are provided. Therefore, tasks with less

neighboring mobile users should be given higher demands to

increase their attractions to mobile users. Then we have

Xk
i3 = λ3 ln(1 + (1− Ni

Nmax
)) (5)

where λ3 is a coefficient that scales the value of the demand

affected by the neighboring mobile users. Ni is the number of

neighboring mobile users of task ti, and Nmax = max(Ni) is

the maximum number of neighboring mobile users among all

tasks. We can see that the less neighboring mobile users, the

larger demand is required. The demand is lower bounded by

0 and upper bounded by λ3 ln 2.

B. Weights Calculation with AHP

Figure 2 shows the AHP framework for demand calculation.

The demand of each sensing task can be calculated according

to Eq. 2 where Xk
i1

, Xk
i2

and Xk
i3

are the three criteria C1,

C2 and C3 for tasks respectively, and W = (w1, w2, w3)
T is

the vector of weights for criteria. In the following, we use the

AHP to derive the appropriate values for the vector of weights.

C1 C2 C3

C1 1 3 5
C2 1/3 1 2
C3 1/5 1/2 1

TABLE I
AN EXAMPLE OF PAIRWISE COMPARISON MATRIX A = (aij)3×3

Pairwise Comparison Matrix A: We use the pairwise

comparison matrix A = (aij)3×3 to express the relative

importance of one criteria over another. Generally, in practical

the values in the matrix are always determined by experts

and different for different application scenarios. For ease of

understanding, we give an example like A = (aij)3×3. Each

entry aij represents the relative importance of the criteria

Ci over the criteria Cj . If aij > 1, the criteria Ci is more

important than the criteria Cj , while if aij < 1, the criteria Ci

is less important than the criteria Cj . aij = 1 if the criteria

Ci and Cj have the same importance. The entries aij and aji
satisfy that aij × aji = 1. In the AHP, the relative importance

between two criteria is measured according to a numerical

scale from 1 to 9 [29]. We can choose suitable values from 1

to 9 for aij according to the relative importance between two

criteria in real scenarios.

Here we use an example in Table I to explain the pairwise

comparison matrix. For example, a12 = 3 means the criteria

C1 (the deadline) is slightly more important than the criteria

C2 (the completing progress). a13 = 5 means the criteria C1

(the deadline) is strongly more important than the criteria C3

(the number of neighboring mobile users).
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We then derive the normalized pairwise comparison matrix

Ā = (āij)3×3 by normalizing A in each column. That is,

each entry is calculated as āij =
aij∑3

k=1 akj
. The normalized

pairwise comparison matrix derived from Table I in shown in

Table II.

C1 C2 C3

C1 0.652 0.667 0.625
C2 0.217 0.222 0.250
C3 0.131 0.111 0.125

TABLE II
NORMALIZED PAIRWISE COMPARISON MATRIX Ā = (āij)3×3 FOR THE

EXAMPLE IN TABLE I

Vector of weights: With the normalized pairwise compari-

son matrix, the vector of weights W = (w1, w2, w3)
T can be

calculated by averaging the entries on each row of Ā. That is,

wi =
1

3

3∑
j=1

āij (6)

Therefore, we can observe that the vector of weights

W = (0.648, 0.230, 0.122)T for the example in Table II,

which reflects the relative importance of the criteria on total

demand. Since 0 ≤ Xk
i1
≤ λ1 ln 2, 0 ≤ Xk

i2
≤ λ2 ln 2

and 0 ≤ Xk
i3
≤ λ3 ln 2, and w1 + w2 + w3 = 1, we can

have dki = w1X
k
i1
+ w2X

k
i2
+ w3X

k
i3
≤ λmax ln 2 where

λmax = max(λ1, λ2, λ3).

C. Demand Calculation and Reward Update

With the vector of weights and the demands affected by

three factors, we can calculate the demands of all sensing tasks

according to Eq. 2. That is, dki = w1X
k
i1
+ w2X

k
i2
+ w3X

k
i3

.

We then normalize the demand dki to a scale [0, 1]. Since 0 ≤
Xk

i1
≤ λ1 ln 2, 0 ≤ Xk

i2
≤ λ2 ln 2 and 0 ≤ Xk

i3
≤ λ3 ln 2,

and w1 + w2 + w3 = 1, we can have dki ≤ λmax ln 2 where

λmax = max(λ1, λ2, λ3). Therefore, the normalized demand

d̄ki can be calculated by d̄ki =
dk
i

λmax ln 2 .

We map the normalized demands into N levels and assign

the reward to a sensing task according to its demand level.

Table III shows an example of N = 5 demand levels. The

demand level of a task is 2 if its normalized demand falls in

(0.2, 0.4].

Demand [0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
Level 1 2 3 4 5

TABLE III
AN EXAMPLE OF DEMAND LEVELS WHEN N = 5

We then determine the reward of the task according to its

demand level by using the following rule.

rkti = r0 + λ(DLk
ti − 1) (7)

where rkti is the updated reward for sensing task ti at the

kth sensing round, r0 is the reward associated with the

demand level 1 and DLk
ti is the demand level of sensing

task ti at the kth sensing round. We can see that the reward

increases linearly as the demand level increases and λ is the

increasing scale. The maximum reward one can obtain for one

measurement is r0 + λ(N − 1). Considering that each task ti
requires ϕi measurements, the maximum total rewards for all

sensing tasks is

m∑
i=1

ϕi(r0 + λ(N − 1)) ≤ B (8)

That is, the maximum total rewards should not exceed the

reward budget B. Given the reward budget B, the increasing

scale λ and the demand level N , r0 can be determined as

follows.

r0 =
B∑m

i=1 ϕi
− λ(N − 1) (9)

V. DISTRIBUTED TASK SELECTION MECHANISMS

In this section, we first prove that the task selection problem

is NP-hard, and then propose distributed task selection algo-

rithms to help users select tasks while maximizing their total

profits at each sensing round.

Theorem 1. The task selection problem is NP-hard.

Proof. We use a graph to model the task selection problem.

Let G = (V,E,W,R) denote the traveling graph for mobile

user ui. V = {Lui
, Lt1 , Lt2 , · · · , Ltm} denotes the set of

vertices consisting of the initial location of user ui and the

locations of all sensing tasks. R = {rui , rt1 , rt2 , · · · , rtm} is

the set of weights on vertices where rui
= 0 and rtj is the

reward of task tj at this round. E is the set of edges between

any pair of vertices and W is the set of weights on edges

where the weight of an edge is the traveling distance between

two vertices.

Given a set of tasks T k
ui

,
∑

tj∈T k
ui

rktj can be calculated, and

C(T k
ui
) is the cost on the shortest path that starts from Lui

and travels all the vertices in T k
ui

. Note that the shortest path

should be a simple path. When C(T k
ui
) = 0, problem in Eq.

1 is converted to the following problem.

max P (T k
ui
) =

∑
tj∈Tk

ui

rktj

s.t. ΓT k
ui
≤ Bk

ui

(10)

Given the graph G, the problem in Eq. 10 is to find a

path originated at Lui with total travelling time no more

than Bk
ui

such that the total rewards gained from vertices is

maximized. Hence we can see the problem in Eq. 10 is actually

an orienteering problem [30] which is already proved to be

NP-hard. Since problem in Eq. 10 is a special case of problem

in Eq. 1 where C(T k
ui
) = 0, the task selection problem shown

in Eq. 1 is also NP-hard.

In the following, we propose an optimal dynamic program-

ming based task selection algorithm and an efficient greedy

task selection algorithm.
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Fig. 3. An example of sequence � in dp[�][j] with a total of 6 tasks.

A. Dynamic Programming based Task Selection Algorithm

Given a set of tasks, the total reward is fixed, but the

traveling distance is quite different depending on traveling

order on the location-dependent tasks. Let dp[�][j] denotes the

shortest path for traveling the set of tasks in � starting from

the initial location of the mobile user and ending at a location

Ltj associated with task tj . Let dp[�] denotes the shortest path

for �, so we can have dp[�] = minmj=1(dp[�][j]).

Here � is a sequence composed of 0 and 1 with the length

of m which is the total number of tasks. Thus, � in the dp[�][j]
ranges from {00 · · · 0} to {11 · · · 1}. If task tq is selected by

the mobile user, the qth position in sequence � is 1; otherwise,

it is 0. Figure 3 gives an example of sequence � of dp[�][j]
with a total of 6 tasks. We can see that 1 appears at the second,

fourth, and fifth position of the sequence, which means that

the tasks t2, t4, and t5 are selected by the mobile user.

Let dist[j][q] denote the distance between task tj and tq .

Given a sequence of �, we can know the set of tasks selected

by the mobile user. Let o(�) denote the performing order of the

selected tasks in �. Let dp[�][j]o(�) denote the total traveling

distance starting from the initial location of the mobile user

and ending at location of task tj by following the performing

order of o(�). For example, given the sequence in Figure 3,

and o[�] is {t4, t5, t2}, we have dp[�][j]o(�) = dist[s][t4] +
dist[t4][t5]+dist[t5][t2] where s denote the initial location of

the mobile user. Obviously, dp[�][j] should be the shortest path

among all the possible traveling paths ending at Ltj for the

selected tasks in the sequence �. Note that if task tj does not

belong to the selected tasks in the sequence �, dp[�][j] should

be ∞. Therefore, we have

dp[�][j] =

{
mino(�){dp[�][j]o(�)} tj ∈ �,

∞ tj /∈ �.
(11)

where tj ∈ � means that the jth position of � is 1.

For the sequence of �, if we further select another task tq ,

then the sequence of � becomes � | 1� (q − 1). 1� (q − 1)
means that 1 shifts to the left by q−1 bits, and � | 1� (q−1)
means that we take the or operation between the sequences of

� and 1� (k−1). Thus, we can get a new sequence where tq
is selected besides the previous selected tasks in �. According

to Eq. 11, we can have

dp[� | 1� (q − 1)][q] = min
1≤j≤m

{dp[�][j] + dist[j][q]} (12)

From Eq. 12, we can see that finding the shortest path for

a set of tasks exhibits optimal substructure, which implies

that we can solve the task selection problem with dynamic

programming. Therefore, we propose a dynamic programming

based task selection algorithm to choose the optimal set of

10.77

18.35

000000

000001

000010

111110

111111

8.60

15.41

17.59

22.82

13.18

15.35

20.58

17.02

19.34

24.56

16.14

18.32

23.54

17.55

22.78

1 2 3 4 5 6

0

0

dp[ i ] [ j ]

011110

Fig. 4. The shortest path matrix of dp[�][j] with a total of 6 tasks.

tasks with the maximum profit while satisfying the travel

time/distance budget.

The key idea of the algorithm is using a sequence to indicate

which task has been selected. The procedures are descried as

follows:

1) Construct the shortest path matrix DP
=(dp[�][j])2m×(m+1) where m is the number of tasks.
�ranges from [00 · · · 0] to [11 · · · 1] and j ranges from

0 to m. dp[00 · · · 0][0] is initialized with 0 and all the

other entries are initialized with ∞.

2) Calculate all dp[�][j] according to Eq. 12.

3) Calculate the total profits for each �, denoted by
P (�) =R(�)−C(�), where R(�) is the total rewards of selected

tasks in sequence �, and C(�) is the traveling cost

corresponding to the shortest path dp[�].
4) Find the maximum P (�) whose shortest path dp

[�] is nolarger than the traveling time/distance budget.

Figure 4 shows the shortest path matrix of dp[�][
j] with atotal of 6 tasks. � ranges from {000000} to {111111} and jranges from 0 to 6. dp[000000][0] is set to 0 while other entries

are set to∞. We calculate dp[�][j] one by one according to Eq.

12, so the shortest path for �, dp[�], can be easily obtained.

For each row of sequence �, the total rewards R(
�) can beeasily calculated by summing up the rewards of selected tasks

in �. Finally, we filter out the sequences whose shortest path

does not meet the traveling time/distance budget and find out

the maximum P (�) from the remaining sequences. Thus, the

selected tasks in the corresponding sequence � is the optimal

set of tasks for the mobile user to perform.

Theorem 2. The dynamic programming based task selection
algorithm has a computational complexity of O(m22

m), wherem is the total number of tasks.

Proof. The shortest path matrix DP has 2m ∗ (m+1)
entries,where m is the number of tasks. For calculating each entry

dp[�][j], it needs to run m steps according to Eq. 12. Therefore,

the computational complexity of the dynamic programming

based task selection algorithm is O(m22m).

B. Greedy Task Selection Algorithm

Although the dynamic programming based task selection

algorithm can provide the optimal solution, it is not suitable
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for a large scale of tasks since its computational cost is too

expensive. Therefore, we further propose an efficient greedy

task selection algorithm.

We use the profit provided by the candidate tasks as a

criteria, which is calculated as the reward of the task minus the

cost of the movement from the current location to the location

of the task. Thus, each mobile user will greedily select the task

which can mostly increase the total profit at each step within

the traveling time/distance budget until no satisfied task can

be found.

Theorem 3. The greedy task selection algorithm has a com-
putational complexity of O(m2).

Proof. When choosing the next task, users will consider all

available tasks and the number of tasks at most equals m.

Moreover, each user at most can select m tasks to perform.

Hence the computational complexity of the greedy task selec-

tion algorithm is O(m2).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

demand-based dynamic incentive mechanism and the task se-

lection algorithms. We compare our algorithm with the steered

crowdsensing mechanism [13] which dynamically changes the

rewards of tasks according to expected quality improvements.

As for the dynamic incentive mechanisms proposed in [11]

and [15], the former is proposed to maintain adequate level

of participants and does not take location into consideration,

while the latter is designed for one-shot sensing and the budget

of each task would not change once initially determined,

so they are not suitable to compare with our mechanism.

Moreover, we also compare our incentive mechanism with a

fixed incentive mechanism where the reward would not change

once determined.

Steered crowdsensing mechanism: In [13], the reward of

a task changes dynamically according to the expected quality

improvements of the task. The reward function (Eq. 12 in [13])

of the steered crowdsensing mechanism is rewritten as follows.

Rk
ti = Rc + μΔQ(x) (13)

where Rk
ti is the reward of task ti at the kth round, Rc is

an additional reward given to the participant, and ΔQ(x) =
Q(x+ 1)−Q(x) is the expected quality improvement due to

received (x+1)th measurement of the task. In our experiments,

we set μ = 100, δ = 0.2, rc = 5, so the reward of each task

varies in [5, 25].

It is worth noting that the reward function of the steered

crowdsensing incentive mechanism in Eq. 13 looks simi-

larly to our demand-based dynamic reward function in Eq.

7. However, the reward function of steered incentive is a

decreasing function which becomes smaller and smaller as

more measurements are received. In this way, the attraction of

each task to participants becomes smaller and smaller as time

goes on. In contrast, our demand-based function is determined

by the demand of each task but not the expected quality
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Fig. 5. The comparison of the dynamic programming based task selection
algorithm and the greedy task selection algorithm.

improvement, so it can increase when demand is high and

also can decrease when the demand is small.

Fixed incentive mechanism: The fixed incentive mecha-

nisms set a fixed reward for each task and the reward would

not change once it is initially determined. In our experiments,

we also compare the proposed demand-based dynamic incen-

tive mechanism with the fixed incentive mechanism. In each

experiment, the fixed incentive mechanism randomly generates

a demand level for each task as presented in Table III and uses

the corresponding reward for each task. The reward of each

task would not change in latter rounds.

In our experiments, the locations of mobile users and

sensing tasks are randomly generated in a 3000m × 3000m

area. We assume each mobile user’s walking speed is 2m/s
and the cost for movement is 0.002$/m. We assume there are

20 sensing tasks and each sensing task requires 20 independent

measurements to reach the required quality. The deadline of

each sensing task is randomly generated between [5, 15]. Given

the reward budget B = 1000$, we map the demand into five

demand levels as shown in Table III and set λ = 0.5$ and

r0 = 0.5$. The number of mobile users ranges from 40 to

140. We perform each experiment for 100 times and use the

average value to demonstrate the performance.

A. Comparison of The Task Selection Algorithms

We first compare the performance of the dynamic program-

ming based task selection algorithm with the greedy task

selection algorithm. Figure 5(a) show the average profit per

user against the number of users at the sensing round 2.

The average profit per user is the total profits of all users

divided by the total number of users for 100 experiments.

We can see that the optimal dynamic programming based

task selection algorithm achieves higher profit than the greedy

task selection algorithm. Figure 5(b) shows the boxplot of the

difference of the user profit between the two task selection

algorithms for all users in 100 experiments. We can see that the

dynamic programming based task selection algorithm always

obtains a higher profit for any user, and the difference varies

from 2 to 16 in all experiments. Although the greedy task

selection algorithm is not optimal, it is much faster than the

dynamic programming based task selection algorithm, which

can be used for crowdsensing with large scale. In the following

experiments, we use the optimal dynamic programming based

task selection algorithm.
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Fig. 6. The comparison of the incentive mechanisms on the coverage.

B. Coverage

Coverage measures how good the algorithm balances the

popularity among sensing tasks, which is a kind of spatial

metric. The larger the coverage, the better the balance.

Impact of user number: Figure 6(a) shows the coverage

of the three mechanisms against the number of users until

the last sensing round. We can see that the demand-based

incentive mechanism and the steered crowdsensing incentive

mechanism always achieve better coverage than the fixed

incentive mechanism. The demand-based incentive mechanism

and the steered crowdsensing incentive mechanism always

achieve 100% coverage which means that each sensing task is

at least selected once by users. This is because our algorithm

can characterize the demand of each task from multiple factors

and change the relative popularity among tasks, so that even

far away sensing tasks will be selected by mobile users. As

for the steered crowdsensing incentive mechanism, the rewards

of sensing tasks without receiving any measurement become

relatively higher compared to others, which encourages mobile

users to select these uncovered sensing tasks. While the

coverage for the fixed incentive mechanism increases as the

increasing of the number of mobile users, since more users

means higher probability of a task to be selected/covered.

However, the fixed incentive mechanism cannot reach 100%
coverage even for 140 mobile users.

Impact of sensing rounds: Figure 6(b) shows the coverage

of the three mechanisms against the number of sensing rounds

when there are 100 mobile users. First, we can observe that the

coverage of the demand-based incentive mechanism and the

steered crowdsensing incentive mechanism are always higher

than that of the fixed incentive mechanism at all sensing

rounds. We can also see that the coverage increases at first as

the round goes on since more uncovered tasks will be selected.

The coverage of the demand-based incentive mechanism and

the steered incentive mechanism reaches 100% coverage while

that of the fixed incentive mechanism cannot reach 100%
coverage. This means that just increasing the sensing rounds

does not increase the popularity of unpopular sensing tasks in

the fixed incentive mechanism.

C. Overall Completeness

Each sensing task is expected to be completed before its

deadline and the overall completeness measures how good of

task completeness before their deadlines.
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Fig. 7. The comparison of the incentive mechanisms on the overall complete-
ness.
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Fig. 8. The comparison of the incentive mechanisms on the # of measure-
ments.

Impact of user number: Figure 7(a) shows the overall

completeness of the three mechanisms against the number of

users until the last sensing round. The overall completeness

increases as the number of mobile users increases, as there

are more users to work on the tasks. Compared to the fixed

incentive mechanism and the steered incentive mechanism,

the demand-based incentive mechanism has a higher overall

completeness and the superiority becomes more obvious for

more mobile users.

Impact of sensing rounds: Figure 7(b) shows the overall

completeness of the three mechanisms against the number

of sensing rounds when there are 100 mobile users. The

deadline of each sensing task is randomly generated between

[5, 15]. We can see that the demand-based incentive mecha-

nism always has a higher overall completeness than the fixed

incentive mechanism and the steered incentive mechanism for

all sensing rounds. The demand-based incentive mechanism

achieves almost 100% completeness while the fixed incentive

mechanism only has about 70% completeness. The steered

crowdsensing incentive mechanism has the worst performance

that only achieves 40% completeness since it only considers

the quality of tasks but does not take the deadline of tasks into

consideration.

D. # of Measurements

Each sensing task expects to receive the required number of

measurements before its deadline to ensure the sensing quality.

In particular, the more number of measurements, the better

encouragement given by the incentive mechanisms.

Impact of user number: Figure 8(a) shows the comparison

of the incentive mechanisms on the average # of measurements

of all sensing tasks against the number of users until the

last sensing round. In our experiments, 20 measurements are

required for each sensing task. The average # of measurement

increases as the number of mobile users increases, as there are
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Fig. 9. The comparison of the incentive mechanisms on variance of measure-
ments and average reward per measurement.

more users to work on the tasks. We can observe that the on-

demand incentive mechanism achieves the best performance

compared to the other incentive mechanisms and its average #

of measurements can reach almost 20 when there 100 mobile

users.

Impact of sensing rounds: Figure 8(b) shows the total #

of measurements of all tasks at a round when there are 100

mobile users. As shown in Figure 8(b), the steered incentive

mechanism has the largest total number of measurements at

the first round, which is because its rewards are higher than the

others at this round given the reward update rule in Eq. 13. The

fixed incentive mechanism performs better at the following

2nd and 3rd round than the on-demand and steered incentive

mechanisms. This is because the rewards of the on-demand

and the steered incentive mechanisms decrease as tasks receive

more and more measurements, while the the rewards of fixed

incentive mechanism do not change and are relatively higher

than that of the other two incentive mechanisms. Starting

from the 4th round, there is no more new measurement

for the fixed and the steered incentive mechanisms, which

is because the rewards cannot encourage mobile users to

perform far-away tasks. In contrast, the proposed on-demand

incentive mechanism continually has new measurements for

the tasks at the following rounds, which is because that it

dynamically change the rewards of tasks according to their

real-time demands, which can encourage users to perform far-

away tasks.

E. Variance of Measurements

The variance of measurements characterizes the balance

of users’ participation among sensing tasks. If an incentive

mechanism achieves larger average # of measurements with

smaller variance of measurements than others, it achieves

better balance of users’ participation among sensing tasks.

Figure 9(a) shows the variance of measurement of the

three mechanisms against the number of the users until the

last sensing round. We can first observe that the variance

of measurements of the on-demand incentive mechanism is

much smaller than the other two incentive mechanisms. Given

that it also has the largest average # of measurements as

shown in Figure 8(a), we can conclude that the proposed on-

demand incentive mechanism realizes better balance of users’

participation among sensing tasks.

Note that the variance of measurements of the three incen-

tive mechanisms tends to decrease with more users. This is

because users tend to select nearby sensing tasks and more

users means better distribution of measurements among tasks.

However, when the number of users is small, the variance

of measurements shows an increasing trend for the fixed

and steered incentive mechanisms when the number of users

increases. This is because the number of measurements of each

task is too small. The on-demand incentive mechanism does

not have this trend, because it takes the demands to tasks into

consideration and encourage users to select far-away tasks to

realize well balance of participation among tasks.

F. Average Reward per Measurement

The platform always expects to maximize its welfare and we

use the reward per measurement to reflect this objective. The

platform will have a larger welfare if it pays smaller reward

per measurement.

Figure 9(b) shows the average reward per measurement of

the three mechanisms against the number of users until the last

sensing round. We can see the average reward per measure-

ment of the on-demand incentive mechanism is smaller than

that of the fixed incentive mechanism and the steered incentive

mechanism. This is because our algorithm can find more

suitable values for the rewards according to the demands of

tasks while the rewards of sensing tasks in the fixed incentive

mechanism cannot change. The average reward per measure-

ment of the on-demand incentive mechanism decreases as the

increasing of the mobile users, since the demand is stronger

for less number of mobile users.

VII. CONCLUSION

In this paper, we focused on location-dependent crowd-

sensing systems, and proposed a demand-based dynamic in-

centive mechanism that dynamically changes the reward of

each task in an on demand way to balance the popularity

among tasks. Extensive experiments show that the dynamic

incentive mechanism outperforms the state-of-the-art in terms

of coverage, overall completeness, and the average reward per

measurement. That is, the proposed demand-based dynamic

incentive mechanism achieves better participation and partic-

ipation balance among tasks.
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