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Robust Incentive Tree Design for Mobile
Crowdsensing

Xiang Zhang, Guoliang Xue, Ruozhou Yu, Dejun Yang, Jian Tang

Abstract—With the proliferation of smart mobile devices
(smart phone, tablet, and wearable), mobile crowdsensing be-
comes a powerful sensing and computation paradigm. It has been
put into application in many fields, such as spectrum sensing,
environmental monitoring, healthcare, and so on. Driven by
promising incentives, the power of the crowd grants crowdsensing
an advantage in mobilizing users who perform sensing tasks with
the embedded sensors on the smart devices. Auction is one of
the commonly adopted crowdsensing incentive mechanisms to
incentivize users for participation. However, it does not consider
the incentive for user solicitation, where in crowdsensing, such
incentive would ease the tension when there is a lack of
crowdsensing users. To deal with this issue, we aim to design
an auction-based incentive tree to offer rewards to users for
both participation and solicitation. Meanwhile, we want the
incentive mechanism to be robust against dishonest behavior such
as untruthful bidding and sybil attacks, to eliminate malicious
price manipulations. We design RIT as a Robust Incentive
Tree mechanism for mobile crowdsensing which combines the
advantages of auctions and incentive trees. We prove that RIT
is truthful and sybil-proof with probability at least H , for any
given H ∈ (0, 1). We also prove that RIT satisfies individual
rationality, computational efficiency, and solicitation incentive.
Simulation results of RIT further confirm our analysis.
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1. INTRODUCTION

With the proliferation of smart mobile devices (e.g., smart
phone, tablet, and wearable), the richness of embedded sen-
sors (e.g., accelerometer, compass, gyroscope, GPS), and the
increasingly powerful processors, mobile users can perform
basic sensing tasks single-handedly. Crowdsensing [10], which
falls into the category of mobile crowdsourcing [15], has
blossomed into a fertile area for commercial business, where
mobile device users are recruited to collectively share their
sensing data. Unlike traditional labor markets where jobs are
assigned to designated workers, crowdsensing out-sources the
jobs to the crowd who can be recruited online or through
social networks. Driven by promising incentives, the power
of the crowd grants crowdsensing advantages in mobilizing
crowdsensing users to provide services in various areas, such
as spectrum sensing [1], environmental monitoring [19], traffic
prediction [42], healthcare [14, 28, 30], and so on.

Zhang, Xue, and Yu are with Arizona State University, Tempe, AZ 85287.
Email: {xzhan229, xue, ruozhouy}@asu.edu. Yang is with Colorado
School of Mines, Golden, CO 80401. Email: djyang@mines.edu. Tang is
with Syracuse University, Syracuse, NY 13244. Email: jtang02@syr.edu.
This research was supported in part by NSF grants 1421685, 1420881,
1444059, 1461886, 1525920, 1717197, and 1717315. The information re-
ported here does not reflect the position or policy of the federal government.

Behind the success of these applications, one of the forces
that motivate the users into participation is the incentives paid
to the crowdsensing users. When performing crowdsensing
jobs, it incurs costs to crowdsensing users, in terms of power
consumption, private information leakage, time spent, etc.
These costs might prevent the users from further participation.
Thus, monetary rewards would be offered to the crowdsensing
users as compensations such that despite the costs, users would
still devote their efforts to perform the crowdsensing jobs.

A good incentive mechanism, which allocates tasks and
computes proper payments, is crucial to the success of a
crowdsensing application. Auction is one of the commonly
adopted incentive mechanisms for crowdsensing [9, 17, 20, 23,
35, 40]. There are several desired properties for an auction:
truthfulness, individual rationality, and computational effi-
ciency. These properties aim to make the mechanism robust,
fair, and executable. We will present formal definitions of these
properties in Section 3-C. Among these properties, truthfulness
is the crowning jewel which guarantees the robustness of the
auction, such that each user is better off being honest to reveal
its true cost. If truthfulness is not guaranteed for an auction,
dishonest users may misreport their sensing costs and receive
payments higher than they deserve, and honest users may leave
the crowdsensing platform in fear of price manipulation.

Though being widely-adopted, auction has its limitation. In
a crowdsensing auction, it is assumed that all users are known
to be present and are aware of the existence of the auction.
However, this is not always true for crowdsensing. In many
scenarios, finishing a crowdsensing job requires a large amount
of users’ efforts, and the efforts from existing users are far
from enough. Thus, auction alone cannot satisfy the need when
there are not enough users to perform the sensing tasks. One
possible solution is to provide extra incentives to users who
could recruit more users for the crowdsensing job.

On the other hand, incentive tree mechanisms are de-
signed [3, 6–8, 24] to incentivize individuals for solicitation.
An incentive tree is a tree-structured incentive mechanism
which offers rewards to each individual for solicitation. In-
centive tree mechanisms can be applied to provide incentives
for existing users to spread the word to other potential users
hidden in their social networks. It can depict the solicitation
process of the crowdsensing users (if user P1 refers user P2,
then in the incentive tree P1 is the parent of P2), and computes
the payment for each user based on its own contribution and
the contribution from its descendants.



A perfect poster child of the incentive tree mechanisms is
the Pyramid Scheme [27], which provides promising rewards
for solicitation. The DARPA Network Challenge [4] is another
example where the incentive tree demonstrated its efficiency in
crowdsourcing. In 2009, DARPA initiated the challenge where
contestants were asked to locate ten balloons deployed across
the United States with a $40, 000 reward for the winner. An
MIT team [26] won the challenge by applying an incentive tree
mechanism which recruited nearly 4,400 participants within
nine hours to find all ten balloons. Their strategy is as follows.
Each balloon finder is rewarded with $2, 000. The inviter of
the finder is rewarded with $1, 000, and the one who refers the
inviter is rewarded with $500, and so on. This mechanism not
only mobilizes participants to locate the balloons, but to further
refer others into action. Using similar strategies, the incentive
tree has shown its efficiency in many contests such as the TAG
Challenge [29] and the DARPA Shredder Challenge [5].

There is a drawback in these incentive tree mechanisms
despite their efficiencies – they are not robust against sybil
attacks. A sybil attack is that a user may generate multiple
fake identities, and gain a higher utility without devoting extra
efforts. E.g., in the MIT strategy of the DARPA Network
Challenge, Bob is the balloon finder and Alice is the inviter
of Bob. Then Bob receives $2, 000 and Alice receives $1, 000.
Now suppose that Bob launches a sybil attack and splits
himself into Bob1 and Bob2, where Bob1 is the balloon finder,
Bob2 is the inviter of Bob1, and Alice is the inviter of Bob2.
According to the payment rule, Bob1 receives $2, 000, Bob2
receives $1, 000, and Alice receives $500. Then Bob will
receive $2, 000 + $1, 000 = $3, 000 comparing to what he
deserves ($2, 000). On the other hand, Alice will receive $500
comparing to what she deserves ($1, 000). From this example,
we know that without robustness against sybil attacks, a
dishonest user may increase its utility with no extra efforts
devoted, and an honest user may not receive the utility that
she deserves. Thus, an incentive tree mechanism should not
only offer rewards for solicitation, but be robust against sybil
attacks (and this property is named as sybil-proofness).

To design an incentive mechanism that incentivizes both
participation and solicitation with truthfulness and sybil-
proofness, we cannot simply combine an existing sybil-proof
incentive tree with an existing truthful auction, as these two
properties may bring new issues to each other. For instance,
there may be coalitions from the identities generated by one
dishonest user. This coalition may violate the truthfulness
of the mechanism as most crowdsensing auctions are not
designed for robustness against coalitions. Furthermore, it is
proved that no deterministic auction can be robust against
coalitions [12]. Thus, we turn to randomized algorithms for
a satisfactory probability of truthfulness and sybil-proofness.
Therefore, it is non-trivial to design a crowdsensing incentive
mechanism which is truthful and meanwhile sybil-proof.

We propose RIT (Robust Incentive Tree Mechanism for
Crowdsensing) to incentivize users for both participation and

solicitation. We prove that RIT is truthful and sybil-proof with
probability at least H , for any given H ∈ (0, 1). We also
prove that RIT satisfies individual rationality, computational
efficiency, and solicitation incentive. We implemented RIT
and the extensive evaluations further confirm our analysis.

The main contributions of this paper are:

• To the best of our knowledge, we initiate the problem
of designing crowdsensing incentive mechanisms which
incentivize users for both participation and solicitation,
while guaranteeing truthfulness and sybil-proofness.

• We design RIT as the first robust auction-based incentive
tree mechanism for crowdsensing. We prove that RIT
is truthful and sybil-proof with probability at least H ,
for any given H ∈ (0, 1). We also prove that RIT
satisfies individual rationality, computational efficiency,
and solicitation incentive.

The remainder of this paper is organized as follows. In
Section 2, we review the state-of-art works on truthful crowd-
sensing auctions and sybil-proof incentive tree mechanisms. In
Section 3, we describe the crowdsensing model, formulate the
problem studied in this paper, and present the design goal. In
Section 4, we illustrate the challenges when designing truthful
and sybil-proof incentive mechanisms. We present RIT and its
analysis in Section 5 and Section 6, respectively. In Section 7,
we present and analyze the extensive performance evaluation
results. We draw our conclusions in Section 8.

2. RELATED WORK

There is an abundance of research efforts on truthful auction
design for crowdsensing. Two mobile crowdsensing models
were proposed by Yang et al. [35], where a unique Stackelberg
Equilibrium was computed in the first and a truthful auction
was designed for the second. Jin et al. [17] proposed a truthful
and quality-aware crowdsensing auction which approximates
the social welfare. Wen et al. [34] designed a quality-driven
auction for crowdsensing which guarantees truthfulness and
maximizes the social welfare. A truthful auction for crowd-
sensing was proposed by Koutsopoulos [20] to determine
the participation levels and the payments. Luo et al. [23]
designed an all-pay auction which approximates the utility of
the organizer in crowdsensing. Feng et al. studied auctions for
location-aware crowdsensing [9]. Wang et al. [32] designed a
quality-aware truthful auction for crowdsensing, which mini-
mizes the expected expenditure. There are also existing works
on collusion-resistant auctions. Goldberg and Hartline [12]
studied truthful auctions using a consensus rounding technique
to achieve truthfulness against coalitions with a high proba-
bility. Following this line, Wang et al. [33] applied multiple
rounds of an algorithm AEM from [12] to allocate resources
in cloud computing. Zhou and Zheng [43] combined collusion-
resistance with spatial reusability for cognitive radio networks.
Zhang et al. [38] designed a truthful and sybil-proof auction
for crowdsourcing. However, none of these auctions considers
providing incentives for solicitation.
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As for the sybil-proof incentive trees, Douceur and Mosci-
broda [6] proposed Pachira Lottree for distributed service
installations, which is sybil-proof. Emek et al. [8] proposed a
sybil-proof diffusion mechanism within a social network. Two
families of sybil-proof incentive trees were proposed by Lv
and Moscibroda [24], where each satisfies a maximal subset
of the desired properties. Following this line, Zhang et al. [37]
proposed a time-sensitive and sybil-proof incentive tree for
crowdsourcing. Drucker and Fleischer [7] proposed a family of
sybil-proof mechanisms by modifying incentive mechanisms
with natural properties. Chen et al. [3] proposed a direct
referral tree under the query incentive networks. None of
these incentive tree mechanisms considers using truthfulness
to guide the behavior of each participant.

3. CROWDSENSING MODEL AND PROBLEM FORMULATION

In this section, we present the crowdsensing model, describe
the dishonest behaviors, and state the design goal.

A. Crowdsensing Model

In the crowdsensing model, there is a crowdsensing platform
who has a sensing job J to be finished. J consists of
many sensing tasks that can be completed by a crowdsensing
user single-handedly. Each sensing task is indivisible. We
categorize the tasks into m types: τ1, τ2, ..., and τm, according
to their locations. For instance, in mobile spectrum sensing,
users are required to sense the spectrum usage over a large
region. We divide the whole region into many different and
non-overlapping areas, where each area contains several points
of interest (POIs) to be sensed by the users. We regard the
sensing in each area as one task type, and regard the sensing at
one POI as one task. We use Γ to denote the set {τ1, τ2, ...τm}.

There is a set of n crowdsensing users P = {P1, P2, ..., Pn}
who can provide services to complete tasks. Each crowdsens-
ing user Pj chooses one area (task type) tj ∈ Γ to perform
the sensing tasks. In mobile spectrum sensing, this relates to
the geographical location of the user, where each user has
difficulties to sense the spectrum usage in two different areas
in the same time window. Each user Pj can complete at most
Kj > 0 tasks in type tj ∈ Γ. E.g., if P1 can complete at
most three tasks in type τ2, then t1 = τ2 and K1 = 3.
Meanwhile, Pj has a private unit cost cj > 0 to complete
one task in type tj . We define the largest Kj as Kmax, i.e.,
Kmax = maxPj∈P{Kj}.

The job J is described as a multi-subset of Γ and it is
finished if and only if all tasks in J are completed. We use mi

to denote the number of tasks in type τi requested by J . For
instance, if there is a crowdsensing job J = {τ1, τ2, τ3, τ3},
we have m = 3, m1 = 1, m2 = 1, and m3 = 2. J is finished
if and only if one task in type τ1, one task in type τ2, and two
tasks in type τ3 are completed.

The crowdsensing model works as follows. The platform
posts the sensing job J . After J is posted, several users would

join and perform the sensing tasks. However, these users may
not be able to finish the job (perform all sensing tasks) by
themselves. Thus, the platform offers extra incentives such that
the existing users would further refer other users to join them.
We use an incentive tree T to depict this solicitation process,
where each user is represented by a node in the tree. There is
an edge from Pi to Pj iff Pj joins by the solicitation of Pi. To
make the structure of T a tree instead of a forest, we set the
crowdsensing platform as the root and the users who join at the
very beginning are the children of the root. When the number
of crowdsensing users reaches a threshold value N , T stops
growing and the solicitation comes to an end. We will discuss
how to choose the threshold value of N in Remark 6.1. Upon
joining the incentive tree, each user will notify the platform
from whom it is solicited. Thus, the structure of T is known
to the platform at the end of solicitation. We use T ′j to denote
the set of nodes who are descendants of Pj , and rj to denote
the distance from Pj to the root.

Upon joining the incentive tree, each user Pj submits an
ask (tj , kj , aj) to the platform, where kj > 0 is the maximum
number of tasks that Pj claims to be able to complete, and
ask value aj > 0 is the minimum amount of reward that Pj
requires to complete one task in type tj . This submission is
seal-bid, which means that by the time of submission, no user
is aware of the ask from any other user. Note that kj is not
necessarily equal to Kj , but we assume that kj ≤ Kj since
Pj is not able to complete more than Kj tasks. Furthermore,
aj is not necessarily equal to cj , since Pj may gain a higher
utility by not revealing its cost. We use A to denote the ask
vector ((t1, k1, a1); (t2, k2, a2); ...; (tN , kN , aN )).

After collecting the asks, the crowdsensing platform first
computes an auction payment pAj for each user Pj . The plat-
form also computes the indicator xj for Pj which indicates the
number of tasks in type tj that is allocated to Pj . Combining
the auction payments and the incentive tree T , the platform
computes the final payment pj for each user Pj , which is
the actual amount that the platform pays to Pj . Note that the
auction payment is not the payment that each user receives.
We only use it to compute the final payment pj . We use pA,
p, and x to denote vectors (pA1 , p

A
2 , ..., p

A
N ), (p1, p2, ..., pN ),

and (x1, x2, ..., xN ), respectively.

The utility of user Pj with ask (tj , kj , aj) is defined as
Uj(tj , kj , aj) = pj − xjcj , which is Pj’s payment minus its
incurred cost.

B. Dishonest Behaviors

We consider two situations that a user Pj may gain a higher
utility from being dishonest. The first one is that Pj may
submit an ask value aj deviating from its cost cj . The second
one is that Pj may generate fake identities to manipulate the
auction payments or to increase the rewards from the incentive
tree. We use truthfulness to incentivize Pj to reveal its cost
cj . To prevent Pj from generating fake identities, we first give
a formal description of how a sybil attack is launched before
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introducing the concept of sybil-proofness.

A sybil attack is that a user Pj may generate δ(j) fake
identities: Pj1 , Pj2 , ..., Pjδ(j) , where δ(j) > 1. An identity of
Pj resides in the incentive tree either as a child of Pj’s parent
or as a child of another identity of Pj . It does not attach to
other users because the other users didn’t reach out for Pj
during the solicitation. For each child of Pj in the original
incentive tree T , it is attached to one of Pj’s identities after
the sybil attack, while the other parts of the incentive tree
remain unchanged.

Remark 3.1: When defining sybil attacks, we attach an
identity of Pj to Pj’s parent or Pj’s other identities as a
technical convention of sybil attacks [6–8, 24]. 2

Each identity of Pj , denoted as Pjl , acts as a user who
submits an ask (tjl , kjl , ajl), where tjl , kjl , and ajl have
similar definitions to those of tj , kj and aj , respectively. We
assume that Pj’s identities’ asks do not exceed Pj’s capability,
i.e., tjl = tj and

∑δ(j)
l=1 kjl ≤ Kj . Thus, the ask (tjl , kjl , ajl)

can be written as (tj , kjl , ajl). The unit cost of Pjl is cjl = cj .

2P7) 5, ,(τ2

12P 4) 1, ,(τ2

6) 2, ,(τ2

1P

3P 4P

1P

3P

4P
8) 2, ,(τ2

22P

32P

Fig. 1. A sybil attack from P2

Fig. 1 presents an example of a sybil attack from P2 with
ask (τ2, 5, 7). P2 generates three identities P21

, P22
, and P23

with asks (τ2, 1, 4), (τ2, 2, 6), and (τ2, 2, 8), respectively.

Similar to the definition of Pj’s utility in Equation, Pjl ’s
utility is defined as Ujl(tj , kjl , ajl) = pjl − xjlcj , where
pjl and xjl have similar definitions to those of pj and
xj , respectively. The utility of Pj from a sybil attack is∑δ(j)
l=1 pjl −

∑δ(j)
l=1 xjlcj =

∑δ(j)
l=1 Ujl(tj , kjl , ajl).

We claim that for each Pj , it could not generate more than
Kmax fake identities. This is because for each fake identity
Pjl , Kj ≥ kjl ≥ 1. Thus, there will be no more than Kj fake
identities of Pj . This claim is closely related to the design
goal introduced in Section 3-C.

C. Desired Properties and Design Goal

The concepts of the desired properties are presented as follows.

• Truthfulness: No user could increase its utility by report-
ing an ask value other than its cost, i.e., Uj(tj , kj , cj) ≥
Uj(tj , kj , aj);

• Sybil-Proofness: No user could benefit from gener-
ating multiple fake identities, i.e., Uj(tj , kj , cj) ≥∑δ(j)
l=1 Ujl(tj , kjl , ajl), where kj ≥

∑δ(j)
l=1 kjl , for any kj

and δ(j);

• Individual Rationality: No user has a negative utility by
revealing its cost, i.e., Uj(tj , kj , cj) ≥ 0;

• Computational Efficiency: The mechanism can be exe-
cuted within polynomial time;

• Solicitation Incentive: If Pl is about to join T , then Pj’s
utility when Pl joins as Pj’s child is no less than Pj’s
utility when Pl joins as another user’s child.

There are many other properties that receive interests from
research communities when designing crowdsensing incentive
mechanisms, such as data quality guarantee [11, 36] and
privacy protection [16, 18, 22]. These properties are out of
the scope of this paper and are subject to future research.

In this paper, we want to design an incentive mecha-
nism to guarantee both truthfulness and sybil-proofness, i.e.,
Uj(tj ,Kj , cj) ≥

∑δ(j)
l=1 Ujl(tj , kjl , ajl). However, we cannot

simply combine a sybil-proof incentive tree with an existing
truthful crowdsensing auction to achieve this. The reasons are
two-folded. On one hand, by lying about the asks, an identity
of a user may increase the payment of another identity in the
incentive tree. On the other hand, multiple identities from the
same user may form coalitions to violate truthfulness of the
mechanism, since most truthful crowdsensing auctions do not
consider such coalitions.

To overcome such difficulty, we take the inspiration from a
consensus rounding technique [12], and develop new schemes
to guarantee truthfulness against coalitions with a high prob-
ability. By defining high probability, it regards to some pa-
rameter of the input, e.g., the number of asks and the number
winners in the auction. We introduce the following concepts.

• d-truthfulness: For any coalition of size at most d, the
total utility of the coalition could not be increased if some
of them reveal their ask values other than their costs;

• (d, η)-truthfulness: A mechanism is (d, η)-truthful if it
is d-truthful with probability at least η.

Since Pj could not generate more than Kmax fake identities,
the incentive mechanism needs to be Kmax-truthful for each
task type. It has been proved in [12] that no deterministic
auction can achieve Kmax-truthfulness when Kmax ≥ 2.
Thus, our goal is to design a (Kmax, H)-truthful mechanism.

The design goal of this paper: under the crowdsensing
model presented in Section 3-A, given a probability H ∈
(0, 1), design an incentive mechanism such that for each
crowdsensing user Pj , Uj(tj ,Kj , cj) ≥

∑δ(j)
l=1 Ujl(tj , kjl , ajl)

for any Kj and δ(j) with probability at least H . This encour-
ages Pj to reveal Kj and cj , and not launch sybil attacks. The
mechanism should meanwhile guarantee individual rationality,
computational efficiency, and solicitation incentive.

4. DESIGN CHALLENGES

In Section 3-C, we have briefly introduced the difficulty to
achieve both truthfulness and sybil-proofness. In this section,
we illustrate the challenges in detail when designing the
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incentive mechanism. We focus on the impact of truthfulness
and sybil-proofness on each other. Through these discussions,
we show that we cannot simply combine an existing truthful
auction and an existing sybil-proof incentive tree mechanism.
Thus, it is non-trivial to design a mechanism that achieves
both truthfulness and sybil-proofness.

A. Impact of Auctions on Sybil-proofness

Most sybil-proof incentive mechanisms are contribution-based
[2, 6, 7, 24], where payments are computed based on the
contribution from the users. In this paper, we use the auction
payment to quantify the contribution of each user, since
payment itself is a measurement of the contribution.

For existing sybil-proof mechanisms, they are robust against
multi-identity attacks, such that if a user launches an attack, it
will not have an increment in utility. However, if we combine
the auctions with a sybil-proof incentive tree mechanism, the
sybil-proofness might be violated.

11
P

21
P

3P

3P

1P

2P

2P

)2,2,( 1t

)3,1,( 1t
)5,1,( 1t

)2,1,( 1t

)6,1,( 1t

)5,1,( 1t)3,1,( 1t

Fig. 2. An illustration of the impact from the auctions on sybil-proofness

We use the Fig. 2 to provide an example, where
there are three users P1, P2, and P3 with truthful asks
(τ1, 2, 2), (τ1, 1, 3), and (τ1, 1, 5), respectively. The job J
requires two tasks of type τ1.

For ease of understanding, we use the k-th lowest price auc-
tion instead of the complicated truthful crowdsensing auctions
for this example. In the k-th lowest price auction, there are
several bidders, each of whom sells an item (or service). Each
bidder has a private cost and submits an ask. The winners
are the ones who submit the k − 1 lowest asks, and their
payments are the k-th lowest ask. Each bidder’s utility is
the payment received minus its cost. It has been proven that
the k-th lowest price auction is a truthful auction [31]. The
sybil-proof incentive tree mechanism that we use to compute
the final payment is from [24], where the reward for Pj is

pj = 2pAj +ln(1− pAj
1+

∑
Pj∈Tj

pAl
). (We use the auction payment

as the contribution of each user.)

We focus on P1. If each user submits its truthful ask, P1

is assigned to complete two tasks, and the auction payment is
2 × 3 = 6. Thus, p1 = 5.85 and P1’s utility is 5.85 − 2 ×
2 = 1.85. Suppose that Pj launches a multi-identity attack as
shown in Fig. 2. Then P11

is assigned with one task and its
auction payment is 5. P2 is assigned with the other task and
its auction payment is 5. Thus, p11

= 4.39, p12
= 0, and P1’s

utility is 4.39−2 = 2.39 > 1.85. From this example, we know

that combining auctions with sybil-proof incentive trees may
violate sybil-proofness.

B. Impact of Incentive Trees on Truthfulness

There is a large body of efforts on truthful incentive mecha-
nisms for crowdsensing [9, 17, 20, 23, 35, 36, 39–41]. How-
ever, if we combine these mechanisms with incentive trees,
where users have incentives for solicitation, the truthfulness
of these mechanisms may be violated since the payment is
also related to the solicitation incentive.

We use the instance in Fig. 3 to illustrate such impact.

2P
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3P 4P

)4,1,( 1t 2P

1P

3P 4P

)4,1,( 1 et -)5,1,( 1t

)4,1,( 1t

)4,1,( 1t

)4,1,( 1t)5,1,( 1t )5,1,( 1t

Fig. 3. An illustration of the impact from the incentive trees on truthfulness

In Fig. 3, there are four bidders P1, P2, P3, and P4 who
sell services for one task type τ1, with cost values 5, 4, 5, and
4, respectively. The job J requires two tasks of type τ1. We
use the third price auction and the sybil-proof incentive tree
in [24] to compute the final payment, where the reward for Pj
is pj = 2pAj + ln(1− pAj

1+
∑
Pj∈Tj

pAl
).

We focus on user P1. If each user submits its truthful
ask, pA1 = 0, p1 = 0, and P1’s utility is 0. If P1 bids
4 − ε instead, then pA1 = 4, p1 = 7.41, and P1’s utility
is 7.41 − 5 = 2.41 > 0. Thus, P1 has the incentive to bid
untruthfully, which indicates that incentive trees may violate
the truthfulness of an auction. Furthermore, when applying
incentive trees on truthful auctions, the auction payment may
also be influenced if there is a multi-identity attack. This is
because the auction payment of one identity depends on the
asks from other identities of the same user.

5. DESIGN OF RIT

In this section, we present the incentive mechanism RIT
(Robust Incentive Tree Mechanism for Crowdsensing).

A. Design Rationale

The mechanism RIT consists of two phases: the auction
phase and the payment determination phase. The auction
phase allocates tasks to each user j and computes the auction
payment pAj . In the auction phase, we propose two algorithms:
CRA (Collusion Ressistant Auction) in Algorithm 1 as a
basic auction, which allocates at most mi tasks to users and
guarantees k-truthfulness with a high probability, and Extract
in Algorithm 2, which converts the asks from the users into
the format that CRA requires. To make sure that exactly mi

tasks are assigned to the users for each τi, we run multiple
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rounds of CRAs to allocate the tasks and meanwhile guarantee
(Kmax, H)-truthfulness. In the payment determination phase,
based on the auction payment pAj and the solicitation of user j
in the incentive tree, we propose an incentive tree mechanism
to compute pj .

B. Design Details

We first present CRA in Algorithm 1 and Extract in Algo-
rithm 2 which are used by RIT in Algorithm 3.

We design CRA in Algorithm 1 to allocate at most q tasks
in type τi. Let α = (α1, α2, ...) be a vector of asks where each
αω bids for one task in type τi. Let x′ω be the indicator such
that if αω is allocated to one task in CRA, x′ω = 1; x′ω = 0
otherwise. Let p′ω be the auction payment for αω . CRA takes
the ask vector α for type τi, the number of unallocated tasks
(in τi) q, and mi as input, and outputs the indicator vector
x′ = (x′1, x

′
2, ...) and payment vector p′ = (p′1, p

′
2, ...). From

Line 1 to Line 16 of Algorithm 1, we select at most q + mi

asks as potential winning asks. If there are more than q asks
selected, we randomly choose q asks among them with equal
probability as the winning asks and allocate one task to each
winning ask. The reason why we first select no more than
q+mi potential winning asks and then choose q winning asks
is to guarantee that the auction phase is Kmax-truthful with
high probability. We will provide more detailed explanations
in Lemma 6.2 and Remark 6.1.

In Algorithm 1, we first sample a subset S of asks from α
randomly with equal probability 1

q+mi
in Line 2. We define

s as the smallest sampled ask value in Line 3. Next we
calculate ns based on its definition in Line 5. If ns ≤ q+mi,
we temporarily choose the smallest ns asks in α in Line 7.
Otherwise, among the smallest ns asks, we choose each
one with equal probability q+mi

2ns
independently in Line 10.

However, the number of selected asks may still exceed q+mi.
Therefore, we apply a q + mi + 1-st auction in Line 14 and
Line 15, where we choose the smallest q + mi asks, and set
the payment s as the q + mi + 1-st smallest ask value. Till
here, the algorithm selects no more than q+mi asks. If there
are more than q asks chosen, there will not be enough tasks to
be allocated. To make sure that CRA allocates no more than
q tasks, we select q asks randomly among these chosen asks
with equal probability as final winning asks in Line 18 and
all the others are losing asks. The corresponding payment is
s for each winning ask in Line 22.

In CRA, each ask bids for one task, whereas in RIT the ask
from each user is in the format of (tj , kj , aj). Thus, we use
Extract in Algorithm 2 to transform the ask vector A into
the vector α for each task type τi, such that α contains all
asks that bid for tasks in type τi. Extract takes the task type
τi and the ask vector A as input, and outputs the ask vector
α = (α1, α2, ...) for task type τi and a function λ(·), such
that λ(ω) = j indicates that αω comes from user Pj . For the
ask (tj , kj , aj) from each user Pj , if tj equals to τi, Extract
expands its ask into kj asks of value aj in α and updates the

Algorithm 1: CRA(α, q,mi)

1 x′ ← 0, p′ ← 0;
2 Let S be a sample of α where each ask is sampled with

probability 1
q+mi

independently;
3 s← minαω∈S{αω};
4 Let y be a uniform random value over [0, 1];
5 ns ← b]s(α)c{2z+y :z∈Z}, where ]s(α) is the number of

asks at most s in α, and b]s(α)c{2z+y :z∈Z} is the nearest
round-down value to ]s(α) in {2z+y : z ∈ Z};

6 if ns ≤ q +mi then
7 Choose the smallest ns asks;
8 else
9 for each ask value αω among the ns asks do

10 Choose αω with probability q+mi
2ns

;
11 end
12 end
13 if there are more than q +mi asks chosen then
14 Choose the smallest q +mi asks as winning asks;
15 Let s be the q +mi + 1-st smallest ask value among

the winning asks;
16 end
17 if there are more than q asks chosen then
18 Randomly select q asks as winners with equal

probability and set the others as losers;
19 end
20 for each αω in α do
21 if αω is a winning ask then
22 x′ω ← 1, p′ω ← s;
23 end
24 end
25 return (x′,p′).

function λ(·) in Line 6 of Algorithm 2. As an illustration, if
A = ((τ1, 2, 3); (τ2, 3, 4); (τ1, 4, 2)), after Extract(τ1,A), the
ask vector α = (3, 3, 2, 2, 2, 2), and the λ function is computed
as λ(1) = 1, λ(2) = 1, λ(3) = 3, λ(4) = 3, λ(5) = 3, and
λ(6) = 3.

Algorithm 2: Extract(τi,A)

1 ω ← 0;
2 for j = 1, 2, ..., N do
3 if tj = τi then
4 for f = 1, 2, ..., kj do
5 ω ← ω + 1;
6 αω ← aj , λ(ω)← j;
7 end
8 end
9 end

10 return (α, λ(·)).

In Algorithm 3, RIT takes the job J , users’ asks A,
the incentive tree T , and the probability H as input, and
outputs the indicator x and the final payment vector p. RIT
consists of two phases, the auction phase and the payment

6



Algorithm 3: RIT(J ,A, T,H)

/* Auction Phase */
1 x← 0, p← 0;
2 pA ← 0, η ← H

1
m ;

3 for each task type τi do
4 Define A′ as ((t′1, k

′
1, a
′
1); (t′2, k

′
2, a
′
2); ...);

5 A′ ← A;
6 q ← mi, rounds← 0;
7 max← b lg η

lg((1− 1
mi

)Kmax+log(1− 2Kmax
mi

)−e−
mi
8 )
c ;

8 while rounds < max and q > 0 do
9 (α, λ(·))← Extract(τi,A′);

10 (x′,p′)←CRA(α, q,mi);
11 for each ask αω in α do
12 if x′ω = 1 then
13 xλ(ω) ← xλ(ω) + 1;
14 pAλ(ω) ← pAλ(ω) + p′ω;
15 k′λ(ω) ← k′λ(ω) − 1;
16 q ← q − 1;
17 end
18 end
19 rounds← rounds+ 1;
20 end
21 end

/* Payment Determination Phase */
22 if all tasks in J are assigned then
23 for each user j in the incentive tree do
24 pj = pAj +

∑
Pl∈Γj ,tl 6=tj (

1
2 )rlpAl ;

25 end
26 else
27 x← 0, p← 0;
28 end
29 return (x,p).

determination phase. The auction phase (Line 2 to Line 21)
applies multiple rounds of CRAs to allocate tasks and compute
auction payments for each τi. We first calculate the probability
η in Line 2 such that RIT needs to be (Kmax, η)-truthful for
each type τi. From Line 3 to Line 21, we allocate mi tasks
and compute the corresponding auction payments. We set q as
the number of unallocated tasks and rounds as the number
of finished rounds of CRAs. We calculate max for each τi
as the maximum number of rounds to apply CRA in Line 7.
We prove it in Lemma 6.3 that if we run CRA for no more
than max rounds for each τi, RIT is (Kmax, H)-truthful.
Before applying CRA in Line 10, we first use Extract to
construct the ask vector α from the unallocated asks A′ in
Line 9. After CRA, we update the indicator xλ(ω), the auction
payment pAλ(ω), and the remaining capability k′λ(ω) for the
user who submits a winning ask αω in Line 13, Line 14,
and Line 15, respectively. We also update q and rounds in
Line 16 and Line 19, respectively. The loop from Line 8 to
Line 21 terminates when rounds exceeds max or all tasks in
type τi have been allocated.

The payment determination phase (Line 22 to Line 28)
computes the final payment for each user. If all tasks required
by J are allocated, we apply the function in Line 24 to
compute pj for each user Pj . Otherwise, J cannot be finished
while satisfying the desired properties required by the design
goal, and we set the payment for each user as 0 with no
allocated tasks (Line 27). In Line 24, for each Pj , the payment
pj sums up the auction payment pAj and the weighted auction
payments from its descendants whose task types are different
from tj . For each Pl whose auction payment contributes to
pj , the corresponding weight is ( 1

2 )rl .

6. DESIRED PROPERTIES OF RIT

In this section, we analyze RIT and prove that RIT satisfies
the desired properties required by the design goal of this paper.

Lemma 6.1: The auction phase of RIT is individually
rational, i.e., if aj = cj , pAj ≥ xjcj . 2

Proof: Let j = λ(ω). In CRA, if an ask αω = cj loses,
Pj’s utility from this ask is 0 since the payment would be 0 and
there’s no cost incurred. If an ask αω = cj wins the auction,
then the payment would be determined by Line 3 or Line 15
in Algorithm 1. If the payment is determined by Line 3, then
all of the ns winning asks have ask values lower than the
payment s according to the definition of ns in Line 5, which
means that s ≥ cj . If the payment is determined by Line 15,
since s is the q+mi+1-st smallest ask value and αω is among
the q+mi smallest ask values, we have s ≥ cj . Thus, for each
Pj and τi, the auction payment pAj equals to the sum of the
payment s in each round of CRA, and this value is no less
than the total cost xjcj .

Theorem 1: RIT is individually rational. 2

Proof: Uj(tj , kj , cj) = pj − xjcj = (pAj − xjcj) +∑
Pl∈Γj ,tl 6=tj ( 1

2 )rlpAl . By Lemma 6.1, we have pAj ≥ xjcj .
Since pAl ≥ 0, we have Uj(tj , kj , cj) ≥ 0.

Lemma 6.2: CRA is k-truthful with probability no less than
(1− 1

q+mi
)k + log(1− 2k

q+mi
)− e−

q+mi
8 . 2

Proof: Suppose there is a coalition of size k. Let Es be
the event that an ask from the coalition is in the sample S
in Line 2 of Algorithm 1, let Ec be the event that ns is not a
k-consensus [12] and ns ≥ q+mi, and let Eo be the event that
there are more than q+mi winners in Line 13 of Algorithm 1.
By Lemma 15 of [13], if none of these events occurs, CRA is
k-truthful. Now we analyze the probabilities of these events:

• Pr[Es] = 1 − (1 − 1
q+mi

)k, since each ask is sampled
independently with probability 1

q+mi
.

• If ns ≤ q + mi, CRA is k-truthful when Es does not
occur; if ns > q + mi, by Lemma 9 and Lemma 15
of [13], this probability is less than − log(1 − 2k

q+mi
).

Thus, Pr[Ec ∪ Es] ≤ 1− (1− 1
q+mi

)k − log(1− 2k
q+mi

).
• Since the expected number of winning asks in Line 13

is ns × q+mi
2ns

= q+mi
2 , by Chernoff bound [25] and
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Lemma 15 of [13], Pr[Eo] ≤ e−
q+mi

8 .

Thus, CRA is k-truthful with probability 1− Pr[Ec ∪ Es ∪
Eo] ≥ (1− 1

q+mi
)k + log(1− 2k

q+mi
)− e−

q+mi
8 .

Remark 6.1: For the lower bound of the probability in
Lemma 6.2, it is easy to verify that it decreases with the
decrement of q. Thus, when q = 0, the lower bound is
(1 − 1

mi
)k + log(1 − 2k

mi
) − e−

mi
8 . When the coalition size

is relatively small compared to the job size, i.e., k
mi
� 1, the

lower bound is close to one. Since each user can only have
at most Kmax fake identities to form a coalition in CRA and
Kmax � mi, CRA is Kmax-truthful with a high probability.
E.g., when Kmax = 10 and mi = 1, 000, the lower bound is
0.98, which means that CRA is (10, 0.98)-truthful.

However, we cannot directly apply the consensus technique
from [12]. If we use the same technique, the new lower bound
becomes (1− 1

q )k + log(1− 2k
q )− e−

q
8 by a similar analysis

of Lemma 6.2. After several rounds of CRAs in Algorithm 3,
it is possible that there is a small value of q such that k

q is
not close to zero, which drags down the lower bound of the
probability. E.g., if k = 10 and q = 50, the new lower bound
is 0.59, which is too low to be a satisfactory probability. To
select q +mi winners in CRA, we need at least 2mi asks to
bid for tasks in τi in Algorithm 2, as the number of unallocated
tasks q can be as most mi for each τi. Thus, the incentive tree
should propagate to N users such that for each τi, the users
are able to complete at least 2mi tasks. 2

Lemma 6.3: For all Pj ∈ P ,
∑δ(j)
l=1 Ujl(tj , kjl , cj) ≥∑δ(j)

l=1 Ujl(tj , kjl , ajl) holds with probability at least H . 2

Proof: For each task type τi, we apply at most
max = b lg η

lg((1− 1
mi

)Kmax+log(1− 2Kmax
mi

)−e−
mi
8 )
c rounds of

CRAs. Each round of CRA is Kmax-truthful with probability
at least (1− 1

mi
)Kmax + log(1− 2Kmax

mi
)− e−

mi
8 . To make all

rounds of CRAs be Kmax-truthful for τi, it requires that each
round of CRA is Kmax-truthful, and this probability is no less
than ((1− 1

mi
)Kmax+log(1− 2Kmax

mi
)−e−

mi
8 )max ≥ η. Thus,

the probability that the auction phase is truthful for all users
is at least ηm = H .

In the payment determination phase, according to Line 24,
pj − xjcj = pAj − xjcj +

∑
Pl∈Γj ,tl 6=tj (

1
2 )rlpAl . Pj has no

influence on
∑
Pl∈Γj ,tl 6=tj (

1
2 )rlpAl by changing its own ask

value. Therefore, pj − xjcj is maximized if and only if pAj −
xjcj is maximized. Since the probability that pAj − xjcj is
maximized when revealing cj is at least H for all Pj ∈ P ,
the probability that the inequality holds is at least H .

Lemma 6.4: RIT is sybil-proof when the ask values of
all Pj’s identities are the same, i.e., Uj(tj , kj , aj) ≥

∑δ(j)
l=1

Ujl(tj , kjl , aj), where kj =
∑δ(j)
l=1 kjl . 2

Proof: From Algorithm 3, we know that for each task
type τi, CRA is applied after Extract, which constructs the
unit ask vector α from the ask vector A. Thus, the number of
fake identities does not influence the payment of the auction

phase when kj =
∑δ(j)
l=1 kjl and ajl = aj for each Pjl , which

indicates that
∑δ(j)
l=1 xjl = xj and the auction payment for

each ask does not change. Since Uj(tj , kj , aj) = pj − xjcj ,
Ujl(tj , kjl , aj) = pjl −xjlcj , and xj =

∑δ(j)
l=1 xjl , we need to

prove that pj ≥
∑δ(j)
l=1 pjl in order to prove this lemma.

Since an identity of Pj is attached to either Pj’s parent
or another identity of Pj according to Section 3-B, for any
sybil attack, we can imitate the attack by a series of “simpler”
attacks, where in each of these “simpler” attacks, an identity
of Pj splits itself into two new identities. Therefore, if we
can prove that none of these attacks could bring Pj a higher
payment, we can prove pj − xjcj ≥

∑δ(j)
l=1 p

l
j −

∑δ(j)
l=1 xjlcj .

gj
p
g

1g
j
p

2g
j
p

Fig. 4. An illustration of the attack when Pjg1
is the parent of Pjg2

There are two kinds of sybil attacks if Pj splits one of its
identities Pjg into two new identities, Pjg1 and Pjg2 . The first
is that Pjg1 is the parent of Pjg2 , as illustrated in Fig. 4. Let
zl be the number of Pj’s identities where Pl is a descendant
of these identities. Let r′l be the distance from a user Pl to
the root after the attack. Let T ′jg2 denote the set of users who
are descendants of Pjg2 . The auction payment for each user
does not change after the attack. If Pl is not a descendant of
Pjg2 , r′l = rl; otherwise, r′l = rl + 1. Thus, the change of
Pj’s payment from this sybil attack is

∑
Pl∈T ′jg2 ,tl 6=tj

[(zl +

1)( 1
2 )r
′
lpAl −zl( 1

2 )rlpAl ] =
∑
Pl∈T ′jg2

,tl 6=tj
1−zl

2 ( 1
2 )rlpAl . Since

zl ≥ 1, this change of payment is non-positive, which indicates
that the first kind of attack could not increase Pj’s utility.

gj
p

 

1g
j
p

 

2g
j
p

Fig. 5. An illustration of the attack when Pjg1
and Pjg2

are siblings

The second kind of attack is that Pjg1 and Pjg2 are siblings
and their parents are the parent of Pjg , as illustrated in Fig. 5.
The total auction payment of all identities of Pj does not
change. The auction payments for all other users do not
change. r′l = rl for each user Pl. Thus, the utility of Pj does
not change after the sybil attack.
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Therefore, the sybil attack with the same ask value could
not bring Pj a higher utility.

Theorem 2: RIT is truthful and sybil-proof with probability
at least H , i.e., Uj(tj ,Kj , cj) ≥

∑δ(j)
l=1 Ujl(tj , kjl , ajl) with

probability at least H , where
∑δ(j)
l=1 kjl ≤ Kj . 2

Proof: From Lemma 6.3, we know that∑δ(j)
l=1 Ujl(tj , kjl , cj) ≥

∑δ(j)
l=1 Ujl(tj , kjl , ajl) for any

user Pj with probability at least H . From Lemma 6.4,
we have

∑δ(j)
l=1 Ujl(tj , kjl , cj) ≤ Uj(tj ,

∑δ(j)
l=1 kjl , cj).

Suppose that there is a user Pj′ whose parent is an
identity of Pj with tj′ = tj , Kj′ = Kj −

∑δ(j)
l=1 kjl ,

and cj′ = cj . Since RIT is individually rational, we
have Uj′(tj ,Kj′ , cj) ≥ 0. Thus,

∑δ(j)
l=1 Ujl(tj , kjl , cj) ≤

Uj(tj ,
∑δ(j)
l=1 kjl , cj) + Uj′(tj ,Kj′ , cj). If we take

Pj′ as another fake identity of Pj , by Lemma 6.4
we have Uj(tj ,

∑δ(j)
l=1 kjl , cj) + Uj′(tj ,Kj′ , cj) ≤

Uj(tj ,
∑δ(j)
l=1 kjl + Kj′ , cj) = Uj(tj ,Kj , cj). Thus, we

have Uj(tj ,Kj , cj) ≥
∑δ(j)
l=1 Ujl(tj , kjl , ajl) with probability

at least H for any Pj ∈ P .

Theorem 3: RIT is computationally efficient. 2

Proof: First we analyze the time complexity of
the auction phase. For each task type τi, we run at
most b lg η

lg((1− 1
mi

)Kmax+log(1− 2Kmax
mi

)−e−
mi
8 )
c rounds of CRAs.

Since (1 − 1
mi

)Kmax + log(1 − 2Kmax
mi

) ' e
−Kmaxmi − 2Kmax

mi

when Kmax
mi
� 1, we have (1− 1

mi
)Kmax + log(1− 2Kmax

mi
)−

e−
mi
8 ≤ e

−Kmaxmi . Thus, the number of rounds of CRAs is
O(

∑m
i=1

− lg η×mi
Kmax

) ∈ O( |J |Kmax
). For each CRA, the running

time is O(
∑
Pj∈P,tj=τi kj) = O(NKmax). Each Extract is

also bounded by O(NKmax). Thus, the time complexity for
the auction phase is O( |J |Kmax

×NKmax) = O(N |J |).

For the payment determination phase, to calculate the
payment for each user Pj , we sum up the weighted auction
payments from the users in T ′j . By computing this payment
recursively from leaf to root, the time complexity of this phase
is O(N). Thus, the time complexity of RIT is O(N |J |),
which indicates that RIT is computationally efficient.

Theorem 4: RIT satisfies solicitation incentive. 2

Proof: Consider that there is a user Pl joining the
incentive tree. Let P̂Aj be the new auction payment of Pj .
If tl = tj , no matter where Pl joins in the incentive tree, the
change of Pj’s utility is P̂Aj −PAj . If tl 6= tj , when Pl joins as
a descendant of Pj , the change of Pj’s utility is ( 1

2 )rlPAl ≥ 0.
To make this increment of utility as large as possible, Pj would
like Pl to join as its child. When Pl joins as a non-descendant
of Pj , Pj’s utility does not change. Thus, comparing with Pl
joining as a child of another user, Pj prefers Pl to joining
as its own child for a higher utility, which indicates that RIT
satisfies solicitation incentive.

7. PERFORMANCE EVALUATION

In this section, we implemented RIT and present the extensive
performance evaluation results.

A. Simulation Setup

We present the setup of the simulation as follows. The job
J consists of tasks in m = 10 task types. Each user Pj’s
task type tj is randomly distributed among the 10 task types,
and kj is uniformly distributed over (0, 20]. The ask value
aj is uniformly distributed over (0, 10]. We set the threshold
probability H = 0.8. All evaluations were tested on a Linux
system with 3.4 GHz Core i-7 CPU and 8GB memory. All
results are averaged over 1000 times.

To build the incentive tree, we used the data from [21], a
twitter social network with over 80, 000 users. A twitter user
Pl follows user Pj indicates that Pj has an influence on Pl.
Thus, Pl may join the incentive tree as a child of Pj . We
generate a spanning forest of the social network where each
user refers all of its un-joined neighbors into the incentive tree.
We set the platform as the root of the incentive tree and attach
all roots of the spanning forest as the children of the root. If
multiple invitations arrive at a user at the same time, we break
the ties by choosing the one with the smallest index among
the inviters as the parent. E.g., if P6 receives invitation from
P1 and P5 at the same time, we add P6 as P1’s child.

B. Performance Metrics

During the simulation, we study average user utility, total
payment, running time, and dishonest user utility as the
metrics to evaluate RIT. We study the impact of the payment
determination phase on the performance metrics introduced
above, by comparing the results of the auction phase with the
final results of RIT.

To evaluate the impact of the number of users on average
user utility, total payment, and running time, we set mi = 5000
for each τi and varied the number of users from 40000 to
80000 with an increment of 1000. The results are presented
in Fig. 6(a), Fig. 7(a), and Fig. 8(a), respectively.

To evaluate the impact of the number of tasks on average
user utility, total payment, and running time, we fixed n =
30000, and varied mi from 1000 to 3000 with an increment of
100 for each task type τi. The results are presented in Fig. 6(b),
Fig. 7(b), and Fig. 8(b), respectively.

To evaluate the properties of sybil-proofness and truthful-
ness, we fixed n = 10000 and let mi be uniformly distributed
over (100, 500] for each task type τi. We randomly picked a
user P29 whose auction payment is non-zero when asking its
true cost c29 = 5.5. We also have K29 = 17, which means
that P29 cannot generate more than 17 identities. We varied
the number of identities of P29 from 2 to 17, and let P29

randomly generate the identities. We monitored the total utility
of P29 from its dishonest behavior. Further, we picked three
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ask values for P29’s identities and monitored the corresponding
utilities. The three ask values are a29 = c29 = 5.5, a29 = 6.5,
and a29 = 6.25. We present the results in Fig. 9.

C. Simulation Results

In this subsection, we present our simulation results on RIT
and provide some analysis on these results.
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Fig. 6. Average user utility

From Fig. 6(a) we observe that with more users, the average
user utility decreases. This is because with more users, the
competition among the users becomes more fierce and as a
result, the average auction payment decreases, which leads
to a decrement to the average user utility. In Fig. 6(b),
when the number of users are fixed, the average user utility
increases with the increment of the job size. This is because
with more tasks to be allocated, the average auction payment
increases, which leads to the increment of average user utility.
Furthermore, by adding the payment determination phase to
the auction phase, the average user utility increases since
each user gets rewards for its solicitation, which confirms our
analysis of solicitation incentive and demonstrates that RIT
incentivizes users for solicitation.
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Fig. 7. Total payment

From Fig. 7(a) it is observed that the total payment of the
platform does not increase remarkably with the increment of
the number of users. The reason is that despite the incre-
ment of the number of users, the number of allocated tasks
is fixed. Besides, with the increment of users, the average
auction payment decreases. However, with more users, the
payment for solicitation of each user may increase. Combining
these factors, the total payment of the platform does not
increase remarkably. In Fig. 7(b), the total payment of the
platform increases with the job size. This is because with
more tasks, the number of winning users increases, and the

payments from RIT increase as well, which leads to the
increment of the total payment. Furthermore, we observe that
by applying the payment determination phase to the auction
phase, the total payment increases. The increment is no more
than the total auction payment, i.e.,

∑
Pj∈P(pj − pAj ) ≤∑

Pj∈P rj(
1
2 )rjpAj ≤

∑
Pj∈P p

A
j , where rj ≥ 1 for each user

Pj . This indicates that by applying the incentive tree based
payment determination phase, the platform pays no more than
the total auction payment for solicitation.
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Fig. 8. Running time

In Fig. 8(a) and Fig. 8(b), we observe that the running
time is increasing in an approximately linear speed with the
size of the users and the job size, respectively, which backs
up the analysis of computational efficiency in Lemma 3.
Furthermore, by applying the payment determination phase,
the time complexity of the algorithm still grows linearly.
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Fig. 9. Utility of P29 in sybil attacks

In Fig. 9, we observe that with the increment of the
number of identities, the utility of P29 decreases, which is
a demonstration of the sybil-proofness of RIT. Apart from
revealing its cost cj = 5.5, we also evaluate the utility of
P29 when it asks values deviating from its true cost by having
a29 = 6.5 and a29 = 6.225. We observe that when a29 = c29,
P29’s utility is larger than those of the rest of the ask values,
which further confirms the truthfulness of RIT.

8. CONCLUSIONS

In this paper, we designed a robust crowdsensing incentive
mechanism RIT, which is an auction-based incentive tree
mechanism, to motivate users for participation and solicitation.
We proved that RIT is truthful and sybil-proof with probability
at least H , for any given H ∈ (0, 1). We also proved that
RIT satisfies individual rationality, computational efficiency,
and solicitation incentive. We implemented RIT and the
performance evaluation results confirm our analysis.
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