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Abstract—Limited research efforts have been made for Mobile
CrowdSensing (MCS) to address quality of the recruited crowd,
i.e., quality of services/data each individual mobile user and the
whole crowd are potentially capable of providing, which is the
main focus of the paper. Moreover, to improve flexibility and
effectiveness, we consider fine-grained MCS, in which each sens-
ing task is divided into multiple subtasks and a mobile user may
make contributions to multiple subtasks. In this paper, we first
introduce mathematical models for characterizing the quality of a
recruited crowd for different sensing applications. Based on these
models, we present a novel auction formulation for quality-aware
and fine-grained MCS, which minimizes the expected expenditure
subject to the quality requirement of each subtask. Then we
discuss how to achieve the optimal expected expenditure, and
present a practical incentive mechanism to solve the auction
problem, which is shown to have the desirable properties of
truthfulness, individual rationality and computational efficiency.
We conducted trace-driven simulation using the mobility dataset
of San Francisco taxies. Extensive simulation results show the
proposed incentive mechanism achieves noticeable expenditure
savings compared to two well-designed baseline methods, and
moreover, it produces close-to-optimal solutions.

Index Terms—Mobile Crowdsensing, Smartphones, Incentive
Mechanism, Auction, Quality of Crowd

I. INTRODUCTION

Beyond communications, mobile phones have been playing
a key role in many aspects of people’s daily life, including
computing, entertainment, etc. However, some mobile users
may not fully realize that most smartphones (such as iPhone
6, Nexus 6, Lumia series, etc) are equipped with a rich
set of powerful embedded sensors, such as camera, GPS,
WiFi/3G/4G interface, accelerometer, digital compass, gyro-
scope, microphone, etc. Additionally, the emergence of wear-
able devices (such as smart watch, Fitbit, Sensordrone [20],
etc) significantly extends the sensing capabilities of smart-
phones. Most wearable devices can be connected to a smart-
phone via a network interface (such as Bluetooth) for data
exchange. Ubiquitous mobile sensors have led to many at-
tractive sensing applications in various domains [13], includ-
ing environmental monitoring, social networking, healthcare,
transportation, safety, etc.
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Fig. 1. An MCS System

Recently, Mobile CrowdSensing (MCS) have been gaining
increasing popularity. As shown in Fig. 1, we consider a
general-purpose MCS system [21], such as PRISM [1] and
Medusa [19]. A service user can make a sensing service
request via a web portal. The request is then analyzed by
the cloud operator, which will use an incentive mechanism to
recruit a sensing crowd (a set of mobile users) and distribute
the request to them. Then their smartphones will perform the
corresponding sensing activities and report sensor data to the
cloud operator. The cloud operator will aggregate and analyze
sensor data, and then send results back to the service user
through the web portal.

While participating in MCS, there is usually a cost occurring
to a mobile user. For example, performing sensing activities
consumes energy from a smartphone. So the mobile user may
want to earn certain credits (e.g., money) to compensate for
his/her energy loss. Most sensing tasks are location-dependent,
which may require mobile users to travel to or around cer-
tain areas, leading to certain costs such as transportation.
Furthermore, mobile users usually won’t be willing to share
their privacy while undertaking sensing tasks if there are no
satisfactory rewards. Based on the above observations, we
are motivated to consider a reverse auction based incentive
mechanism to enable fair pricing between the cloud operator
and mobile users in MCS. As illustrated in Fig. 1, after
receiving a sensing task from a service user, the cloud operator
(the buyer of sensor data) announces it to mobile users. Mobile
users (bidders, sellers and service providers) offer their bids
for undertaking the task and selling their sensor data. Based on
the bids, the cloud operator will selectively determine winners
and after collecting sensor data from winners, it will make
payments to them. Auction mechanism design is crucial for



supporting MCS, because the trading rules between the buyer
(the cloud operator) and the sellers (mobile users) heavily de-
pend on it. Specifically, among all the behavior characteristics
of bidders, truthfulness [17] and individual rationality [10]
are of special interest and most desirable in MCS. An auction
mechanism is truthful if a bidder will not increase its payoff
by submitting any other bids instead of his/her true values.
An auction without truthfulness will be vulnerable to market
manipulation and produce very poor outcomes [8]. An auction
mechanism is individually rational if the payoff of every bidder
is not negative by bidding his/her true values.

Besides the cost, the success of a crowdsourcing application
highly depends on whether a quality crowd can be recruited to
undertake the corresponding tasks. Recent research has been
focused on incentive mechanisms [2], [24] for mobile crowd-
sourcing, which determine how to recruit a crowd mainly
based on their prices/costs. However, limited research efforts
have been made to quality of the recruited crowd, i.e., quality
of services/data each individual mobile user and the whole
crowd are potentially capable of providing, which is the main
focus of the paper. We aim to develop mathematical models to
characterize the quality of a recruited crowd (a set of mobile
users). We believe the models for Quality of Crowd (QoC)
should be application-dependent and we introduce several such
models to serve various applications. Furthermore, Unlike [2],
[24], in our auction formulation, the bids are two-dimensional,
which means the proof of mechanism properties in [2], [24]
cannot be directly applied here; and we follow the Bayesian
setting [17] (See Section III), which is a more realistic model.

We consider fine-grained MCS, in which each sensing task
consists of multiple subtasks and a mobile user may make
contributions to multiple subtasks. For example, if the goal
of a sensing task is to cover a target area, then each subtask
may corresponds to a sub-area. In this way, the recruited crowd
may provide a better coverage for the target area. In addition, a
sensing task may even include a set of heterogeneous subtasks.
For example, subtask 1 may request the sensing crowd to
collect WiFi signal strengths, while subtask 2 may request
for signal strengths of cellular networks. Fine-grained MCS
can lead to a better quality of service and allow a service
user to specify a sensing task more flexibly. However, it also
introduces additional complexity for crowd selection because
a mobile user may be a good candidate for multiple subtasks,
but may contribute differently to different subtasks. Existing
incentive mechanisms [9] select the crowd for a single task,
ignoring benefits that can be brought by sharing service/data
with other tasks/subtasks. However, we aim to select a crowd
to undertake a sensing task, while meeting a certain quality
requirement (explained in Section II) for each of its subtasks.
We summarize our contributions in the following:
• We introduce mathematical models for characterizing

QoC for different sensing applications.
• Based on these models, we present a novel auction for-

mulation for quality-aware and fine-grained MCS, which
minimizes the expected expenditure subject to the quality
requirement of each subtask.

• We discuss how to achieve the optimal expected expen-
diture, and present a practical incentive mechanism to
solve the auction problem, which is shown to be truthful,
individually rational and computationally efficient.

• We conducted trace-driven simulation using the mobility
dataset of San Francisco taxies [18] and compared the
proposed incentive mechanism with two well-designed
baseline methods (rather than trivial random solutions).
Extensive simulation results show the proposed mecha-
nism achieves noticeable expenditure savings compared
to the baselines; moreover, it produces close-to-optimal
solutions.

II. QUALITY OF CROWD (QOC) MODELS

TABLE I
MAJOR NOTATIONS

Notation Explanation
i and M Index of mobile users and the total number of

mobile users
ci and wi True and declared costs of mobile user i respectively
Yi and Zi True and declared quality score vectors of

mobile user i respectively
bi and B Bid of mobile user i and the corresponding

vector
xi and x Winner selection variable of mobile user i

and the corresponding vector
pi and p Payment to mobile user i and the corresponding vector
j and N Index of subtasks and the total number of subtasks
rj and R Quality requirement of subtask j and the corresponding

vector
gj(·) QoC model of subtask j

We focus on a general-purpose MCS system with a sensing
crowd of M mobile users. A subset of mobile users will be
recruited to undertake a sensing task including N subtasks. For
each selected mobile user, there is a cost of ci as explained
above. A quality score is given for mobile user i participating
in subtask j (denoted as yij), which quantifies the quality
of services/data the mobile user is potentially capable of
providing to that subtask. It is application-dependent and can
be assigned according to various factors such as availability,
accuracy of sensor data, reputation, etc. The cloud operator can
calculate quality scores for mobile users and let them know
their own quality scores. We use Yi = [yi1, ..., yij , ..., yiN ] to
denote the quality score vector of mobile user i for all sensing
subtasks.

The Quality of Crowd (QoC) for subtask j, qj , quantifies
the quality of services/data the sensing crowd is potentially
capable of providing, which could be given by a function
gj(·) that can satisfy the following properties: 1) gj(·) is
a monotonically non-decreasing function of 〈yij〉 and 〈xi〉,
where xi is a binary value indicating whether mobile user i
is recruited or not; and 2) gj(·) returns a value in [0, 1]. The
first property reflects the nature that with a larger population of
the recruited crowd and/or higher individual quality scores, the
QoC for the corresponding subtask should not become worse.
In order to make it easier for comparisons and understanding,



the value of QoC should be scaled into [0, 1], with 1 indicting
the corresponding subtask can be perfectly completed by the
recruited crowd. Note that the auction-based incentive mecha-
nisms presented later are not restricted to any particular QoC
model (function). In the following, we introduce several QoC
models that can cover a large variety of sensing applications.
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Fig. 2. QoC models

1) Linear model:

qj =
min(

∑M
i yijxi, qmax)

qmax
. (1)

This model simply sums up quality scores of all mobile users
as the QoC if a goal qmax has not yet achieved; otherwise, the
QoC remains at qmax. This model is suitable for applications
with a goal/constraint of achieving a certain sensing duration
or collecting a certain number of samples. Here, yij can be
the sensing duration or the number of sensing samples that
mobile user i can potentially provide for subtask j. Linear
models have been used in [7], [12].

2) Probabilistic coverage model:

qj = 1−
M∏
i

(1− yijxi). (2)

If yij gives the probability that the target of subtask j (e.g., an
area or a set of points of interest) can by covered by recruiting
mobile user i, then qj is the probability that the target can
be covered by the recruited crowd. This model is suitable for
sensing applications with a goal/constraint of covering a target
area or a set of target points.

3) Logarithmic model:

qj =
log(1 +

∑M
i log(1 + yijxi))

log(1 +
∑M
i log(1 + yij))

. (3)

In the numerator, the inner log term causes the return value
to have a diminishing increment with the quality score, and
the outer log term leads to diminishing increment with the
population of the recruited crowd.

4) Hyperbolic tangent model:

qj = tanh(

M∑
i

yijxi). (4)

Note that it has been shown by [24] that function (3) is
submodular, i.e., the increase of the return value diminishes
with the input set. We can easily show that function (4)
is submodular too. These two models are suitable for most
applications which extract meaningful information from sensor
data, because usually given a larger data set, the additional
information that can be obtained diminishes. Fig. 2 illustrates
how QoC changes with the population of the crowd according
to the three non-linear models. In this example, all mobile
users have a common quality score of 0.1.

As mentioned above, we consider fine-grained MCS, in
which each sensing task consists of multiple subtasks. Each
subtask needs to be completed with a minimum quality
requirement, rj . We use R = [r1, ..., rj , ..., rN ] to denote a
vector of quality requirements of all subtasks. The cloud op-
erator recruits mobile users and makes sure qj = gj(Y,X) ≥
rj ,∀j ∈ {1, ..., N}, for the given sensing task, where X =
[x1, ..., xi, ..., xM ].

III. AUCTION FORMULATION

In MCS, incentive mechanism design can be formulated as
a reverse or procurement auction mechanism design problem.
In the auction, 1) the cloud operator (the buyer) announces
a sensing task to mobile users (bidders and sellers); 2) each
mobile user i submits a bid bi (defined below); 3) the cloud
operator uses an incentive mechanism to select the winners
and determine payments; 4) winners carry out the sensing
task and submit results to the cloud operator; 5) the cloud
operator checks the results and makes payments to winners. In
the following, we use mobile user and bidder interchangeably.

Specifically, bi = (wi,Zi), in which wi is mobile user
i’s declared cost, and Zi is mobile user i’s declared quality
vector. If mobile user i does not want to participate in certain
subtasks, the corresponding declared quality scores can be set
to 0. Because mobile user i’s true cost ci and true quality
vector Yi are private and only known to mobile user i
himself/herself, wi and Zi could be different from ci and
Yi, respectively. Different from [23], mobile users’ private
costs, 〈c〉, are assumed to follow a known distribution here.
This assumption is known as Bayesian setting [17], and it
is a realistic assumption because such a distribution can be
obtained from historical data of previous auction transactions.
fi(c) denotes the probability density function; and Fi(c)
denotes the corresponding cumulative distribution function. So
fi(c) = d

dcFi(c). B = [b1, ...,bi, ...,bM ] is the bid vector of
all mobile users. B−i denotes the bids of all mobile users
except i, so B = [bi,B−i]. In addition, each mobile user i is
a single-minded bidder [17], i.e., at a cost of ci, he/she will
participate in those subtasks, to which he/she has non-zero
quality scores; or none at a cost of 0 otherwise.

The cloud operator must complete each subtask j to the
required quality rj , ∀j ∈ {1, ..., N}. Moreover, the cloud
operator also wishes to conserve money and minimize its
expected expenditure by selectively recruiting mobile users.
Specifically, an auction mechanism takes the bid vector B and
the quality requirement vector R as input and returns a winner



vector x = [x1, ..., xi, ..., xM ], where xi = 1 if mobile user i
wins, and xi = 0 otherwise; it also returns a payment vector
P = [p1, ..., pi, ..., pM ], where pi is the payment that the cloud
operator will make to mobile user i. Based on the output of
the auction, the payoff of mobile user i is defined as

ui =

{
pi − ci, xi = 1;

0, xi = 0.
(5)

The expenditure of a reverse auction is the sum of the
payments

∑M
i pi to all mobile users (bidders).

A. Desirable Properties

In this section, we describe three desirable properties for an
auction mechanism:
• Individual Rationality: an auction mechanism is indi-

vidually rational if for any bidder i, the payoff is non-
negative when bidder i bids his/her true value (ci,Yi).

• Truthfulness: an auction mechanism is truthful if and
only if for every bidder i and B−i, bidder i will not
increase his/her payoff by making a bid (wi,Zi) that is
different from his/her true value (ci,Yi); i.e., bidder i’s
payoff for bidding (ci,Yi) is at least his/her payoff for
bidding any other bid (wi,Zi).

• Computational Efficiency: an auction mechanism is
computationally efficient if the outcome can be computed
in polynomial time.

Of the three properties, truthfulness is the most difficult to
achieve. The bid is two-dimensional because for bidder i, the
bid bi contains two parts: bidder i’s declared cost wi and
bidder i’s declared quality vector Zi. As a result, Myerson’s
theorem [16] about the properties of one-parameter truthful
mechanisms cannot be directly applied. To design a truthful
auction mechanism with two dimensions, we introduce the
following definitions:

Definition 1 (w-Monotonicity). if bidder i wins by bidding
(w∗i , (z

∗
i1, ..., z

∗
ij , ..., z

∗
iN )), then he/she also wins by bidding

(w′i, (z
∗
i1, ..., z

∗
ij , ..., z

∗
iN )) with any w′i ≤ w∗i .

Definition 2 (z-Monotonicity). if bidder i wins by bidding
(w∗i , (z

∗
i1, ..., z

∗
ij , ..., z

∗
iN )), then he/she also wins by bidding

(w∗i , (z
′
i1, ..., z

′
ij , ..., z

′
iN )) with all z′ij ≥ z∗ij .

Definition 3 (Critical Payment). the payment pi for winning
bidder i is set to the critical value di such that bidder i wins
if wi < di, and loses if wi > di.

Theorem 1. An auction mechanism for MCS is truthful if it
satisfies w-Monotonicity, z-Monotonicity and critical payment.

The details of proof can be found in the appendix.

B. Virtual Cost

Next, we introduce virtual cost for reverse auctions and
show its relationship with the expected expenditure. The
concept of virtual valuation has been introduced for forward
auctions in [16].

Definition 4 (Virtual Valuation). In a forward auction, the
virtual valuation of bidder i with valuation vi is

φi(vi) = vi −
1− Fi(vi)
fi(vi)

, (6)

where the hazard rate fi(vi)
1−Fi(vi)

is assumed to be monotonically
non-decreasing (regularity assumption).

Theorem 2 ([17]). Consider any (forward) truthful mechanism
and fix the bids b−i of all bidders except for bidder i. The
expected payment of bidder i satisfies:

E[pi(vi)] = E[φi(vi)xi(vi)]. (7)

However, in a reverse auction, the valuation of a bidder can
be treated as the negative of its cost, i.e., vi = −ci. Therefore,

φi(vi) = −ci −
1− Fi(vi)
fi(vi)

Moreover, it can be easily derived that

Fi(vi) = 1− Fi(ci), fi(vi) = fi(−ci) = fi(ci)

Hence, we have

φi(vi) = −(ci +
Fi(ci)

fi(ci)
)

Definition 5 (Virtual Cost). In a reverse auction, the virtual
cost of bidder i with cost ci is

βi(ci) = ci +
Fi(ci)

fi(ci)
(8)

where the regularity assumption requires that fi(ci)
Fi(ci)

is
monotonically non-increasing. It is clear that βi(ci) =
−φi(vi).

Theorem 3. Consider any reverse truthful mechanism and fix
the bids b−i of all bidders except for bidder i. The expected
payment to bidder i satisfies:

E[pi(ci)] = E[βi(ci)xi(ci)] (9)

Proof: The payment from the buyer to a seller in a reverse
auction can be viewed as the negative of the payment from a
buyer to the seller in a forward auction. Therefore:

E[pi(ci)] = E[−pi(vi)] = E[−φi(vi)xi(vi)] = E[βi(ci)xi(ci)]

Because of Theorem 3 and the independence of all bidders’
costs, it is fairly easy to show that the expected expenditure of
a reverse truthful mechanism is equal to the total virtual cost.
Therefore, to minimize the expected expenditure, it suffices to
minimize the total virtual cost

∑M
i βi(ci)xi.

IV. QUALITY-AWARE INCENTIVE MECHANISMS (QIMS)

In this section, we present quality-aware incentive mecha-
nisms (QIMs). First, we discuss how to achieve the optimal
expected expenditure. Then, we present a practical QIM that
is computationally efficient.



A. Optimal Solutions

The QIM design problem consists of two subproblems:
Winner Selection and Payment Determination. Winner se-
lection problem can be formulated as the following Integer
Programming (IP) problem:
IP-Winner:

min
X

M∑
i=1

βi(wi)xi (10)

Subject to:

qj = gj(Z,X) ≥ rj , ∀j ∈ {1, ..., N} (11)
xi ∈ {0, 1} (12)

The objective (10) is to minimize total virtual cost, i.e., the
expected expenditure of the cloud operator. Constraints (11)
ensure that each subtask’s quality requirement is met. Let
Ψ(B) denote the optimal value of IP-Winner and Ψ(B−i)
denote the optimal value of IP-Winner with bid bi removed.
We can achieve the optimal as follows:

1) Winner Selection: Select winners X∗ by solving IP-
Winner;

2) Payment Determination: pi := β−1i (Ψ(B−i)− (Ψ(B)−
βi(wi))) if x∗i = 1; pi := 0, otherwise.

This incentive mechanism is designed by following the
VCG (Vickrey-Clarke-Groves [17]) auction mechanism. It can
be proven to be truthful and individually rational. The details
of the proof can be found in the appendix. Note that both
the Winner Selection and Payment Determination are different
from those in [23].

However, solving IP-Winner may take exponentially long
time for a large-sized problem instance. Even for the linear
QoC model, IP-Winner is still an Integer Linear Problem
(ILP), which is usually hard to solve. In our simulation, we
used an optimization solver to provide optimal solutions for
the linear QoC model. If we consider other QoC models,
then IP-Winner becomes a non-linear integer programming
problem, which is even much harder. In addition to time com-
plexity, it has been shown that truthfulness cannot be preserved
by a VCG-based auction mechanism with an approximation
(instead of optimal) algorithm [17]. Therefore, we present a
non-VCG-based QIM with computational efficiency.

B. Computationally Efficient QIM

Here, we present a QIM that is truthful, individually rational
and computationally efficient, which we call QIM-E. Similar
to the above method, QIM-E consists of two phases: Winner
Selection and Payment Determination. Winner Selection (Al-
gorithm 1) is a heuristic approach, which keeps selecting the
mobile user (bidder) with the smallest weight as a winner.
We adopt the following metric αi as the weight to assist the
selection:

αi =
β(wi)∑N
j=1

vij
rj

, (13)

where vij is the marginal quality score mobile user i can
contribute to subtask j (according to a QoC model), given a
prior winner set (i.e., crowd) S′:

vij =

{
min(gj(S

′ ∪ {i}), rj)− gj(S′), gj(S
′) < rj ;

0, otherwise.

Then the algorithm updates 〈vij〉 and 〈αi〉 because in each
iteration, gj(S′) changes with the newly selected mobile user.
For those remaining mobile users with a marginal quality score
of 0 for all subtasks, they will be eliminated from the auction.
The algorithm stops when there are no mobile users left.

Algorithm 1: Winner Selection of QIM-E
Input : Bid vector B, mobile user (bidder) set S,

subtask QoC models 〈gj(·)〉 and quality
requirement vector R

Output: Winner vector X
1 xi := 0, ∀i ∈ {1, · · · ,M};
2 S′ := ∅;
3 while S 6= ∅ do
4 αi := β(wi)∑N

j=1

vij
rj

, ∀i ∈ S;

5 k := arg mini∈S(αi);
6 xk := 1;
7 S := S \ {k};
8 S′ := S′ ∪ {k};
9 update 〈vij〉, ∀i ∈ S;

10 forall the m ∈ S do
11 if vmj = 0, ∀j ∈ {1, ..., N} then
12 S := S \ {m};

13 return X := [x1, ..., xi.., xM ];

Note that the weight of each remaining mobile user changes
in each iteration; so instead of maintaining a fixed sorted
bidder list, the algorithm updates their weights and makes
the selection based on the updated weights. In Payment
Determination (Algorithm 2), to determine the payment for
winning mobile user l, the algorithm repeats the above winner
selection for the mobile user set with l excluded. When a
winning mobile user k is found such that his/her selection can
disqualify l from winning the auction, the payment is set to the
highest cost that helps l disqualify k or any winning mobile
user before k.

C. Proof of Properties

Next, we show that QIM-E is truthful, individually rational,
and computationally efficient.

Lemma 1. w-Monotonicity and z-Monotonicity are preserved
in the Winner Selection of QIM-E.

Proof: Suppose mobile user i wins by bidding (w∗i ,Z
∗
i ) =

(w∗i , (z
∗
i1, ..., z

∗
ij , ..., z

∗
iN )). We prove that: 1) he/she will also

win by bidding (w′i,Z
∗
i ) = (w′i, (z

∗
i1, ..., z

∗
ij , ..., z

∗
iN )) with any

w′i < w∗i ; and 2) he/she will also win by bidding (w∗i ,Z
′
i) =

(w∗i , (z
′
i1, ..., z

′
ij , ..., z

′
iN )) with all z′ij > z∗ij .



Algorithm 2: Price Determination of QIM-E
Input : Bid vector B, mobile user (bidder) set S,

subtask QoC models 〈gj(·)〉, quality
requirement vector R, winner vector X

Output: Payment vector P
1 forall the l ∈ S do
2 pl := 0;
3 if xl = 1 then
4 S∗ := S \ {l};
5 S′ := ∅;
6 calculate 〈vlj〉;
7 while S∗ 6= ∅ do
8 αi := β(wi)∑N

j=1

vij
rj

, ∀i ∈ S∗;

9 k := arg mini∈S∗(αi);
10 S∗ := S∗ \ {k};
11 S′ := S′ ∪ {k};
12 pl := max(pl, β

−1
l (αk

∑N
j=1

vlj
rj

));
13 update 〈vij〉, ∀i ∈ {S∗, l};
14 if vlj = 0, ∀j ∈ {1, ..., N} then
15 break;
16 forall the m ∈ S∗ do
17 if vmj = 0, , ∀j ∈ {1, ..., N} then
18 S∗ := S∗ \ {m};

19 return P := [p1, ..., pi, ..., pM ];

Let α∗i , 〈v∗ij〉 denote the weight and marginal quality scores
respectively when mobile user i bids (w∗i ,Z

∗
i ). Let α′i and

〈v′ij〉 denote the weight and marginal quality scores respec-
tively when he/she bids (w′i,Z

∗
i ) or (w∗i ,Z

′
i). In either case of

(w′i,Z
∗
i ) or (w∗i ,Z

′
i), it is clear that v′ij ≥ v∗ij and α′i < α∗i ;

i.e., the weight becomes smaller in each iteration for him/her.
Moreover, as illustrated in lines 10–12 in Algorithm 1, if
he/she has not been eliminated by bidding (w∗i ,Z

∗
i ), he/she

will not be eliminated by bidding (w′i,Z
∗
i ) or (w∗i ,Z

′
i) either.

Therefore, he/she will still win with bid (w′i,Z
∗
i ) or (w∗i ,Z

′
i).

This completes the proof.

Lemma 2. The payment pl is set to a critical value for each
winning mobile user (bidder) l in QIM-E.

Proof: Let k be the index of mobile user with the smallest
weight in each iteration until his/her selection disqualifies
mobile user l. Let dl = maxk(β−1l (αk

∑N
j=1

vlj
rj

)). Note that
the marginal quality scores 〈vlj〉 are updated in each iteration.
If mobile user l bids wl > dl, then αl > αk,∀k, meaning
l does not have the smallest weight in any iteration before
he/she is disqualified by k and thus will be eliminated from
the auction. If mobile user l bids wl < dl, then αl < αk in
one or more iterations, meaning l will be chosen as a winner
the first time when αl < αk happens. Hence dl is the critical
value for winning mobile user l. In Algorithm 2, the payment
pl is set to dl. This completes the proof.

Theorem 4. QIM-E is truthful.

Proof: According to Lemmas 1 and 2 as well as Theo-
rem 1, QIM-E is truthful.

Theorem 5. QIM-E is individually rational.

Proof: We examine two possible cases. First, it is clear
that the payoff of mobile user l is 0 if mobile user l is not
a winner according to Algorithm 2. Second, if mobile user
l is a winner, let the critical value be dl and mobile user
l’s cost be cl. Since QIM-E preserves the critical payment
property as shown in Lemma 2, it is obvious that wl < dl and
dl = pl. Since wl = cl in a truthful mechanism, it is clear
that pl− cl > 0. Therefore, the payoff is always non-negative.
This completes the proof.

Theorem 6. QIM-E is computationally efficient.

Proof: In Algorithm 1, line 4 takes O(MN) time to
calculate 〈αi〉 and update 〈vij〉. Note that finding the mobile
user with the minimum weight only takes O(M) in line 5.
Since the while-loop runs M times, the time complexity of
Algorithm 1 is O(M2N).

However, in Algorithm 2, the for-loop (lines 1–18) iter-
ates M times, and the inner while-loop (lines 7–18) takes
O(M2N) time because it has the same complexity with
Algorithm 1. So Algorithm 2 takes O(M3N) time. Therefore,
the overall time complexity of QIM-E is O(M3N), which
completes the proof.

V. PERFORMANCE EVALUATION

In this section, we present and discuss simulation results
based on real data to justify the effectiveness of the proposed
mechanisms.

A. Baseline Methods

For fair comparisons, we chose two well-designed incentive
mechanisms (one of them is truthful and individually rational)
as the baselines, instead of trivial random solutions. The first
baseline is a revised version of the greedy method with a fixed
list of bidders (referred to as Fix-L) presented in [25]. Since
we deal with a two-parameter auction (cost and quality score),
we use αi = β(wi)∑N

j=1 zij
as the weight to sort the bidders in

non-decreasing order to obtain the fixed list. Then we iterate
through the fixed list and select winners until the quality
requirements of all subtasks are met. The winners are paid
based on the corresponding critical values [25]. Similar as
in [25], it can be shown that Fix-L preserves truthfulness and
individual rationality.

In the second baseline approach, all bidders are sorted in
the non-decreasing order based on their virtual cost (referred
to as Low-C). The algorithm repeatedly selects the bidder with
the lowest virtual cost among the remaining bidder set. This
process stops when quality requirements of all subtasks are
met and winners are paid with critical values. Note that even
though this approach is not truthful, it is still a good baseline
to compare with because the cloud operator tends to directly
reduce the expenditure by selecting bidders with low costs.



B. Simulation Settings

We conducted trace-driven simulation for performance eval-
uation using the mobility dataset [18] of San Francisco taxies,
which contains GPS coordinates of approximately 500 taxis
collected over 30 days in the San Francisco Bay Area. For the
distributions of mobile user (bidder) costs, we considered the
uniform distribution fi(ci) = 0.25 in the range of (0, 4], the
exponential distribution fi(ci) = 0.5e−0.5ci in the range of
(0,+∞) and χ2-distribution with freedom degree of 2. Note
that these functions have the same mean value of 2 and the
first two distributions were also used in [11] and [25]. For
QoC models of subtasks, we have implemented the linear
model, the probabilistic coverage model and the hyperbolic
tangent model introduced in Section II. In our simulation, each
subtask corresponds a sub-area, each of which is a square-
like region with a randomly chosen center, whose left/top
and right/bottom boundaries differ by 0.0005 degrees in both
longitude and latitude (about 160 feet). We derived the quality
score of each taxi i for a subtask j by dividing the number
of samples of i within sub-area j by the number of weeks i
showed up in the dataset, which captures the availability of
the mobile user. Due to non-uniform distribution of samples,
to ensure the quality requirements are satisfied, we normalized
them by a large number, 50, and curved them with an upper
and lower bounds of 0.15 and 0.04 respectively.

We came up with the following scenarios for simulation.
Simulation runs were conducted on a computer with a 2.2GHz
Intel Core i7 CPU and 16GB memory. When the linear QoC
model was used, the optimal expected expenditures were
obtained using the method presented in Section IV-A (labeled
as QIM-Opt), in which Gurobi Optimizer [6] was employed to
solve the corresponding ILP problems. Each number presented
here is an average over 30 runs.

1) In scenarios 1 and 2, the number of subtasks was fixed to
15; quality requirements of subtasks were set to be uniformly
distributed in [0.7, 0.8]. In scenario 1, the linear model was
applied for QoC; the number of mobile users was varied for all
the cost distributions described above. In scenario 2, the above
exponential distribution was applied for costs; the number of
mobile users was varied for the three QoC models mentioned
above. The results of scenario 1 are presented in Fig. 3 and
results of scenario 2 are shown in Fig. 3(a) and Fig. 4.

2) In scenario 3, the linear model was applied for QoC;
costs of mobile users were generated by following the above
exponential distribution; the number of mobile users was set
to 350. The number of subtasks was increased from 5 to 30
with a step size of 5. The corresponding results are presented
in Fig. 5.

3) In scenario 4, we evaluated the running time of proposed
mechanisms. The number of subtasks was fixed to 15; the
linear model was applied for QoC; costs of mobile users were
generated according to the above exponential distribution;
quality requirements of subtasks were uniformly distributed
in [0.7, 0.8]. The number of mobile users was increased from
250 to 500 with a step size of 50. The corresponding results

are presented in Fig. 6.

C. Simulation Results and Analysis

We can make the following observations from the results.
1) In Fig. 3, we show the expected expenditures under

different cost distributions, when the linear model was applied
for QoC. In Fig. 5, we show how the expected expenditure
changes with the number of subtasks. From these figures,
we can see that the expected expenditures given by QIM-
E are consistently close to the optimal values. Specifically,
in Fig. 3, QIM-E produces only 3.9%, 5.1% and 4.4% more
expenditures than the optimal for the exponential, uniform and
χ2-distributions of costs on average respectively. Moreover, in
Fig. 5, QIM-E gives only 3.2% more expenditures than the
optimal on average.

2) From Figs. 3–5, we can see that QIM-E consistently
outperforms Fix-L and Low-C. The reason is that when se-
lecting winners, Low-C does not carefully consider the quality
scores of the mobile users. Even though Fix-L considers the
individual quality scores, it doesn’t carefully take QoC into
consideration . On the contrary, QIM-E favors those mobile
users who contribute the most marginal QoC. Specifically,
in Fig. 3, QIM-E produces about 11.9%, 10.7%, 12.6% less
expenditures than Fix-L for the exponential, uniform and
χ2-distributions of costs on average respectively. Moreover,
in Figs. 3(a) and 4, QIM-E produces about 11.9%, 13.2%,
10.6% less expenditures than Fix-L for the linear, probabilistic
coverage and hyperbolic tangent model of QoC respectively.
Similar observations can be made from Fig. 5. Note that
the performance of Low-C is very close to Fix-L in all the
scenarios.

3) Monotonicity can be observed in Figs. 3–5. As expected,
in Figs. 3 and 4, with more mobile users to choose from, all
mechanisms yield lower expenditures. On the contrary, we can
see that more subtasks lead to higher expenditures no matter
which mechanism is used according to Fig. 5.

4) Fig. 6 shows the running time of different mechanisms
with various numbers of mobile users. The running time of
QIM-E is only 8.8% of that of QIM-Opt on average, which
shows QIM-E is scalable. The running times of QIM-E, Fix-
L and Low-C are fairly close to each other, which matches
the theoretical analyses that suggest they all have a time
complexity of O(M3N).

VI. RELATED WORK

Research efforts have been made to develop general-purpose
MCS systems, such as PRISM [1] and Medusa [19]. Incentive
mechanism design has been addressed in the context general
MCS systems recently. Yang et al. introduced two models
for MCS: platform-centric and user-centric; and designed
an incentive mechanism using a Stackelberg game for the
platform-centric model as well as an auction-based incentive
mechanism for the user-centric model in [24]. Duan et al.
proposed a reward-based collaboration mechanism in [2],
in which collaborators share a total reward announced by
the client. In addition, they investigated how the client can
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(c) χ2-distribution

Fig. 3. Performance with the linear QoC model and different cost distributions (Scenario 1)
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(a) Probability coverage model
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(b) Hyperbolic tangent model

Fig. 4. Performance with different QoC models and the exponential cost distributions (Scenario 2)
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Fig. 5. Performance with different numbers of subtasks (Scenario 3)

design an optimal contract by specifying different task-reward
combinations for different user types. In [26], Zhao et al.
considered the scenario where mobile users arrive one by one
online in a random order. They presented two online incentive
mechanisms, in which mobile users submit their private types
to the crowdsourcer when arrive and the crowdsourcer aims
to select a user subset for maximizing a utility function with
a budget constraint. Feng et al. presented a reverse auction
framework named TRAC in [4] to model location based
auction interactions between a cloud and smartphones, which
minimizes the social cost. In [5], the authors presented two
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Fig. 6. Running time (Scenario 4)

truthful incentive mechanisms for both the offline and online
cases, given dynamic smartphones, uncertain arrivals of tasks,
strategic behaviors and private information of smartphones.
In [27], the authors first designed an incentive mechanism,
EFF, which eliminates dishonest behavior with the help from
a trusted third party for arbitration. They then designed another
mechanism DFF, which, without the help from any third party,
discourages free-riding and false-reporting.

Recently, several research works have addressed incentive
mechanism design with quality considerations. In [9], Kout-
sopoulos et al. seeked a mechanism for user participation



level determination and payment allocation which minimizes
the total cost of compensating participants, while delivering a
certain quality of experience to service requesters. They de-
signed a mechanism that optimally solves this problem. In [7],
the authors presented an approximation mechanism to find an
efficient task allocation with quality of sensing requirements
as well as a pricing mechanism based on bargaining theory.
Luo et al. designed an incentive mechanism [14] based on
all-pay auctions to attract contributions from mobile users.
In [12], Jin et al. designed a truthful, individually rational
and computationally efficient mechanism that approximately
maximizes the social welfare for single-minded combinatorial
models, which was shown to have an approximation ratio,
assuming a linear quality model. Moreover, they designed an
iterative descending mechanism with individual rationality for
multi-minded combinatorial models.

We summarize the differences between our work and these
related works in the following: 1) Unlike most related works,
we consider fine-grained MCS, in which a sensing task
consists of multiple subtasks and a mobile user may make
contributions to multiple subtasks. 2) Many related works,
such as [2], [4], [5], [24], [26], [27], have not offered careful
consideration for QoC and quality requirements of subtasks,
which, however, is the main focus of this paper. 4) The
auction formulation here (with the objective of minimizing
the expected expenditure subject to quality requirements) is
mathematically different from those in related works [7], [12],
[9], [14]. 5) Unlike some previous works mainly focusing on
a specific quality model [7], [12] (such as the linear model),
we conduct a comprehensive study for QoC models.

VII. CONCLUSIONS

In this paper, we have studied incentive mechanism design
for quality-aware and fine-grained MCS. First, we have intro-
duced several models to characterize QoC for different sensing
applications. Based on these models, we have presented a
novel auction formulation for quality-aware and fine-grained
MCS, which minimizes the expected expenditure subject to
the quality requirement of each subtask. We have discussed
how to achieve the optimal expected expenditure, and pre-
sented a practical incentive mechanism to solve the auction
problem, which has been shown to be truthful, individual
rational and computational efficient. We have conducted trace-
driven simulation using the mobility dataset of San Francisco
taxies. Extensive simulation results have shown the proposed
incentive mechanism achieves noticeable expenditure savings
compared to two well-designed baseline methods, and more-
over, it produces close-to-optimal solutions.
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VIII. APPENDIX

As discussed in Section III-A, we show that an MCS
auction mechanism is truthful if it has the w-Monotonicity,
z-Monotonicity and critical payment properties.

Lemma 3. In an MCS auction mechanism, if w-
Monotonicity, z-Monotonicity, and critical payment are sat-
isfied, bidder i will not increase his/her payoff by bidding
(ci,Zi) = (ci, (zi1, ..., zij , ..., ziN )) instead of (ci,Yi) =
(ci, (yi1, ..., yij , ..., yiN )), when Yj 6= Zj .



Proof: We examine two possible scenarios:
1) zij < yij for every j. Let dy , dz denote the critical

payments for bidding (ci,Yi) and (ci,Zi) respectively. We
consider two sub-cases: a) bidder i wins by bidding (ci,Zi).
Based on z-Monotonicity, we know that he/she will also win
by bidding (ci,Yi). In other words, for any ci < dz , we have
ci < dy . Hence, dy ≥ dz; the payment of bidding (ci,Yi)
will not be decreased. b) bidder i loses by bidding (ci,Zi).
In this sub-case, the payoff of bidding (ci,Yi) is 0 if he/she
loses and non-negative if he/she wins.

2) zij > yij for one or more j’s. Before actually making
payments to bidder i, the cloud operator has a quality control
that makes sure the actual quality score yij (derived from the
submitted sensor data) is equal to or greater than zij . If not, no
payments will be made to bidder i, yielding negative payoff
for him/her with bidding (ci,Zi).

The above two cases complete the proof.

Lemma 4. In an MCS auction mechanism, if w-Monotonicity,
z-Monotonicity, and critical payment are satisfied, bidder i
will not increase his/her payoff by bidding (wi,Zi) instead of
(ci,Zi), when ci 6= wi.

Proof: Denote the Critical Payment for bidding (ci,Zi)
by d. We consider two cases:

1) (ci,Zi) is a losing bid. In this case, ci > d. We consider
two sub-cases: a) (wi,Zi) is a losing bid. Bidder i would
have a 0 payoff, which is not better than bidding (ci,Zi).
b) (wi,Zi) is a winning bid. He/she receives the payment d
because the critical payment is independent of wi; the payoff
of bidding (wi,Zi) would be negative, since d < ci.

2) (ci,Zi) is a winning bid. If (wi,Zi) is a winning bid,
bidder i receives the same payment p with (ci,Zi). If (wi,Zi)
is a losing bid, he/she receives a payment of 0.

The above two cases complete the proof.

Theorem 1. An auction mechanism for MCS is truthful if it
satisfies w-Monotonicity, z-Monotonicity and critical payment.

Proof: Based on the definition of truthfulness, it suffices
to show that bidder i will not increase his/her payoff by
bidding any other bid (wi,Zi) instead of (ci,Yi). Lemma 4
has shown that bidder i will not increase his/her payoff
by bidding (wi,Zi) instead of (ci,Zi). In Lemma 3, we
have proved that bidder i will not increase his/her payoff by
bidding (ci,Zi) instead of (ci,Yi). Therefore, bidder i will
not increase his/her payoff by bidding any (wi,Zi) instead of
(ci,Yi). This completes the proof.

Next, we show that QIM with the optimal expected expen-
diture discussed in Section IV-A(referred to as QIM-Opt) is
truthful and individually rational. To prove the truthfulness, we
show w-Monotonicity, z-Monotonicity and critical payment
properties are preserved in QIM-Opt.

Lemma 5. w-Monotonicity is satisfied by the Winner Selection
of QIM-Opt.

Proof: Suppose mobile user i wins by bidding
b∗i = (w∗i , (z

∗
i1, ..., z

∗
ij , ..., z

∗
iN )), or equivalently Ψ(B−i) >

Ψ((b∗i ,B−i)). We will prove that mobile user i also wins
by bidding b′i = (w′i, (z

∗
i1, ..., z

∗
ij , ..., z

∗
iN )) with any w′i <

w∗i through contradiction. Suppose mobile user i will lose
by bidding b′i. Then Ψ((b′i,B−i)) = Ψ(B−i). Therefore,
Ψ((b′i,B−i)) > Ψ((b∗i ,B−i)). However, with the same win-
ner vector x of (b∗i ,B−i), the total virtual cost of (b∗i ,B−i)
would be greater than (b′i,B−i) because w∗i > w′i; this
contradicts the statement that Ψ((b′i,B−i)) > Ψ((b∗i ,B−i)).
Hence, the supposition is false and mobile user i will also win
by bidding b′i. This completes the proof.

Lemma 6. z-Monotonicity is satisfied by the Winner Selection
of QIM-Opt.

Proof: Suppose that mobile user i wins by bidding
b∗i = (w∗i , (z

∗
i1, ..., z

∗
ij , ..., z

∗
iN )), or equivalently Ψ(B−i) >

Ψ((b∗i ,B−i)). We will prove that mobile user i also wins
by bidding b′i = (w∗i , (z

′
i1, ..., z

′
ij , ..., z

′
iN )) with all z′ij ≥

z∗ij through contradiction. Suppose mobile user i will lose
by bidding b′i. Then Ψ((b′i,B−i)) = Ψ(B−i). Therefore,
Ψ((b′i,B−i)) > Ψ((b∗i ,B−i)). However, with the same win-
ner vector x of (b∗i ,B−i), the total virtual cost of (b′i,B−i)
is equal to the total virtual cost of (b∗i ,B−i); this contradicts
the statement that Ψ((b′j ,B−i)) > Ψ((b∗i ,B−i)). Hence, the
supposition is false and mobile user i will also win by bidding
b′i. This completes the proof.

Lemma 7. pi = β−1i (Ψ(B−i)−(Ψ(B)−βi(wi))) is a critical
value for winning mobile user i in QIM-Opt.

Proof: In QIM-Opt for winning mobile user i, Ψ(B−i)−
(Ψ(B)− βi(wi)) is calculated based on the opportunity cost,
which is the increment of total virtual cost of other mobile
users caused by the absence of mobile user i. The opportunity
cost in a reverse auction corresponds to the concept of oppor-
tunity cost in a forward auction introduced in [17]. Because of
the regularity assumption, βi(·) is a monotonically increasing
function. Therefore if wi > β−1i (Ψ(B−i)−(Ψ(B)−βi(wi))),
it will result in a virtual cost higher than the opportunity cost.
So mobile user i will not be selected as a winner. Otherwise if
wi < β−1i (Ψ(B−i)− (Ψ(B)−βi(wi))), it will yield a virtual
cost lower than the opportunity cost. So mobile user i will be
selected as a winner. This completes the proof.

Theorem 7. QIM-Opt is truthful.

Proof: According to Lemmas 5, 6, and 7 as well as
Theorem 1, QIM-Opt is truthful. This completes the proof.

Theorem 8. QIM-Opt is individually rational.

Proof: If mobile user i bids true value (ci,Yi), his/her
payoff is ui = pi − ci = β−1i (Ψ(B−i) − Ψ(B) + βi(ci)) −
ci. The optimality of Ψ(B) causes Ψ(B−i) − Ψ(B) ≥ 0.
Moreover, since βi(·) is monotonically increasing, we have
ui ≥ 0. This completes the proof.


