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Abstract—With the rapid growth of smartphones, crowdsens-
ing emerges as a new paradigm which takes advantage of the per-
vasive sensor-embedded smartphones to collect data efficiently.
Auction has been widely used to design mechanisms to stimulate
smartphone users to participate in the crowdsensing applications
and systems. Many auction-based incentive mechanisms have
been proposed for crowdsensing. However, none of them has
taken into consideration both the bid privacy of smartphone users
and the social cost. To the best of our knowledge, we are the first
to study the design of privacy-preserving incentive mechanisms
that also achieve approximate social cost minimization. In this
paper, we design BidGuard, a general privacy-preserving frame-
work for incentivizing crowdsensing. This framework works with
different score functions for selecting users. In particular, we
propose two score functions, linear and log functions, to realize
the framework. We rigorously prove that BidGuard achieves
computational efficiency, individual rationality, truthfulness, dif-
ferential privacy and approximate social cost minimization. In
addition, the BidGuard with log score function is asymptotically
optimal in terms of the social cost. Extensive simulations evaluate
the performance and validate the desired properties of BidGuard.

I. INTRODUCTION

Nowadays, the proliferation of smartphones is changing
people’s daily lives. With the advance of high-speed 3G/4G
networks and more powerful embedded sensors (e.g., camera,
accelerometer, compass, etc.), crowdsensing emerges as a new
paradigm which takes advantage of the pervasive sensor-
embedded smartphones to collect data efficiently.

A typical crowdsensing system consists of a cloud-based
platform and a large number of smartphone users. The plat-
form works as a sensing service buyer who posts the required
sensing information and recruits a set of smartphone users
to provide sensing services. Once selected by the platform,
a smartphone user starts to collect the required data and
sends it back to the platform. The potential effectiveness
of crowdsensing, especially with geographically distributed
smartphone users, enables numerous crowdsensing applica-
tions [25, 33, 38]. However, most of them assume that the
smartphone users contribute to the platform voluntarily. In
reality, smartphone users consume their own resources such as
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battery and sensing time while completing the sensing tasks.
In addition, they might suffer from the potential privacy dis-
closure by sharing their sensed data with personal information
(e.g., location tags and bid price). Therefore, smartphone users
may be reluctant to participate in a crowdsensing system and
application, unless they are paid some rewards to compensate
their resource consumption or potential privacy leaks. Since
the number of participating smartphone users has a significant
impact on the performance of the crowdsensing systems, it is
necessary to stimulate users to join the systems.

Auction is an efficient method to design incentive mecha-
nisms. Many auction-based incentive mechanisms have been
proposed for crowdsensing [33, 35, 36]. They are essentially
reverse auctions in which the platform is the service buyer
and the smartphone users are the bidders selling sensing
services. In these mechanisms, the service buyer selects bid-
ders according to their submitted task-bid pairs (elaborated in
Section III-A). The objectives of these mechanisms focus on
either maximizing the total value gained by the platform or
minimizing the total payment to the selected users. However,
none of them takes users’ privacy into consideration.

In most of the proposed truthful auction-based incentive
mechanisms, bidders are stimulated to bid their true costs,
which are private information of smartphone users. For trans-
parency, the platform will publish the outcome of the auction
mechanism, which consists of winning bidders and their pay-
ments. Ensuring transparency in the procurement procedure
is essential to efficiency, as it enhances the competitiveness
of public procurement [27]. However, once the true cost of
a smartphone user is reported to the platform, other bidders
might infer this private information based on the published
outcome. This is known as inference attack [14] (we give an
example in Section III). Inference attack has been analyzed in
many areas, e.g., multilevel secure databases [16], data min-
ing [5], web-based applications [29] and mobile devices [22].
In this paper, we focus on designing truthful auction-based
mechanisms to protect users’ bid privacy.

To formalize the notion of users’ bid privacy, we employ the
concept of differential privacy [8]. Intuitively, a mechanism
provides differential privacy if the change of one user’s bid
has limited impact on the outcome. We also leverage the ex-
ponential mechanism [24], a technique to design differentially
private mechanisms, to preserve users’ bid privacy.

In this paper, we study the problem of designing truthful
mechanisms, which achieve computational efficiency, individ-
ual rationality, differential privacy, and approximate social cost
minimization. We consider the scenario where there is one



buyer and multiple sellers. Smartphone users act as bidders and
submit their bids to compete for the chance of being selected
to perform the corresponding tasks. Besides, smartphone users
do not want others to know their own bid information. We
first propose BidGuard, a general differentially private truthful
auction-based framework for incentivizing crowdsensing. As
an important component of this framework, we design two
score functions, which will determine the selection of users.

The main contributions of this paper are as follows:
• To the best of our knowledge, we are the first to propose a

framework, BidGuard, for privacy-preserving crowdsens-
ing incentive mechanisms, which achieves computational
efficiency, individual rationality, truthfulness, differential
privacy, and approximate social cost minimization. Specif-
ically, we design two different score functions, linear score
function and log score function, to realize BidGuard.

• With linear score function, BidGuard achieves
(ε(e− 1)/e, δ)-differential privacy and the social cost is
at most HKOPT + gK · O(lnn) with the probability
of at least 1 − 1/nO(1), where ε > 0 and δ ∈ (0, 1

2 ] are
two constants, e is the base of the natural logarithm,
HK =

∑K
j=1 1/j, K is the size of the largest user task

set, OPT is the optimal social cost, g is the size of the
optimal user set, and n is the number of the users.

• With log score function, BidGuard achieves
(ε(e− 1)/e, δ)-differential privacy and the social cost
is at most 2tHKOPT with the probability of at least
1− e−t for any constant t > 0. In this case, BidGuard is
proved to be asymptotically optimal.

• We evaluate the performance of BidGuard through simula-
tions based on a real data set. Extensive numerical results
show that BidGuard has desired properties.

The remainder of this paper is organized as follows. In Sec-
tion II, we briefly review the related work. In Section III, we
introduce the system model and the objectives. In Section IV,
we present our framework in detail and prove its properties.
We evaluate the performance of our framework in Section V.
We conclude this paper in Section VI.

II. RELATED WORK

In recent years, incentive mechanisms in crowdsens-
ing have been widely studied. As one of the pioneering
works on designing incentive mechanisms for crowdsensing,
Yang et al. [34, 35] proposed two incentive mechanisms for
both user-centric and platform-centric models using auction
and Stackelberg game, respectively. The objectives of most of
the state-of-art incentive mechanisms are either maximizing
the total utility/value of the platform under a certain constraint
(e.g., budget) [37] or minimizing the total payment of the
platform [23]. Feng et al. [11] proposed a mechanism called
TRAC, which takes into consideration the importance of
location information when assigning sensing tasks.

Many pieces of works have explored the privacy-preserving
mechanisms in mobile crowdsourcing. Most of them [12, 19]
apply the spacial and temporal cloaking techniques like K-
anonymity to blur users’ locations in a cloaked area or

cloaked time interval to preserve users’ privacy. PEPSI [7] and
AnonySense [28] focus on anonymous data collection, which
could protect users’ identities when they submit the tasks.

Some efforts have been specially made to protect users’ pri-
vacy in crowdsensing [10, 20, 21, 26, 30]. Although providing
good performance in privacy preservation, the mechanisms in
[10, 20, 21, 26] are based on cryptography techniques and do
not take into consideration the users’ strategic behaviors. Sun
et al. [30] proposed an auction-based incentive mechanism
which encrypts users’ bids by oblivious transfer. But it does
not solve the issue of inference attack because one user still
can infer others’ bids from the received payment. Jin et al.
proposed a privacy-preserving approximately truthful incentive
mechanism [17], which minimizes the total payment, and a
privacy-preserving framework [18] for data aggregation. How-
ever, none of the above works has a performance guarantee on
social cost minimization, which is the objective in this paper.

Differential privacy was firstly introduced by Dwork
et al. [8]. The first differentially private auction mechanism
was proposed by McSherry et al. [24]. They also incorporate
exponential mechanism and mechanism design to achieve
differential privacy with different objectives. General methods
to design truthful mechanisms while still preserving differ-
ential privacy have been studied in [3, 15, 32]. However,
our objective is different from above works. Recently, dif-
ferential privacy has been used in other applications, e.g.,
location-based systems [1] and spatial crowdsoucing [31].
Zhu et al. [39] proposed the first differentially private spectrum
auction mechanism, which achieves strategy-proofness and
approximate revenue maximization. Note that our objective
is to minimize the social cost, which differs from that in [39].

III. MODEL AND PROBLEM FORMULATION

In this section, we present an overview of our crowdsensing
system, model it as a reverse auction, describe the threat
models, and give our design objective.

A. System Model

Similar to most crowdsensing systems [11, 33–36], we
consider a crowdsensing system consisting of a platform
and multiple smartphone users who are interested in per-
forming sensing tasks. The platform first publicizes a set
T = {t1, t2, . . . , tm} of m sensing tasks. Assume there is
a set U = {1, 2, . . . , n} of n > 2 smartphone users. Each
user i has a task set Γi ⊆ T , which she can perform. Each
Γi is associated with a cost ci, which is a private information
of user i. The platform selects a subset of users S ⊆ U to
complete all the sensing tasks in T . At last, the platform
calculates the payment pi for each selected user i ∈ S . Let
−→p = (p1, p2, . . . , pn) denote the payment profile. The utility
of user i ∈ U is

ui =

{
pi − ci, if i ∈ S;
0, otherwise.

In this paper, we model the interactive process between the
platform and the users as a sealed-bid reverse auction, where



βi

User
1 2 3 4 5

Γi t1, t2 t1 t1, t3 t1, t2 t1, t3
bi $3 $1 $4 $5 $5

TABLE I
EXAMPLE SHOWING THE INFERENCE ATTACK

the platform buys sensing service and the users are bidders
who sell sensing service. In order to prevent the monopoly
and guarantee the quality of sensing task, we assume each
task in T can be completed by more than one user in U . This
assumption is reasonable for crowdsensing as made in [11]. If
a task in T can only be completed by at most one user in U ,
we simply remove it from T .

At the beginning of this auction, each user i ∈ U submits
a task-bid pair βi = (Γi, bi) to the platform, where bi is user
i’s bid, representing the minimum price user i wants to sell
her sensing service for. Note that in a truthful auction-based
incentive mechanism, users are stimulated to bid their true
costs, i.e., bi = ci. Without loss of generality, we assume that
for each user, the bid is bounded by [bmin, bmax], where bmin
is normalized to 1 and the difference between bmax and bmin
is denoted by ∆. Let

−→
β = (β1, β2, . . . , βn) denote the task-bid

profile. Given the task-bid profile
−→
β , the platform determines

the outcome of the auction, which consists of selected winning
users S and the payment profile −→p .

B. Threat Models

Threats to Incentive: We assume that users are selfish but
rational. Hence user i could report a bid bi differs from her
true cost ci to maximize her own utility. We also assume that
user i does not misreport her task set Γi as in [11, 33–36]1.
Other threats to incentive (e.g., collusion among bidders) are
out of the scope of this paper.

Threats to Privacy: As mentioned earlier, bidders are
stimulated to bid their true costs in a truthful auction-based
incentive mechanism, i.e., bi = ci. However, one bidder could
infer other bidders’ bid according to the outcome of the mech-
anism. This inference attack can be seen from the following
example. Suppose there are 5 users in the system and their
task-bid pairs βi = (Γi, bi), i ∈ [1, 5] are shown in Table I. The
platform publicizes a set of 3 sensing tasks T = {t1, t2, t3}.
According to the proposed truthful mechanism in TRAC [11],
the winning users S = {2, 1, 3}. Suppose user 5 is a bidder
who want to infer other bidders’ bid, and she changes her
bid b5 from $5 to $3 in the next auction while the other
four bidders do not change their task-bid pairs. The winning
users of the new auction is S = {2, 1, 5}. Since the platform
publishes the outcome of the mechanism for transparency,
user 5 could know the results and infer that user 3’s bid
is between $3 and $5 by the fact that if she bids $5 she will

1If user i reports Γ′
i containing tasks not in Γi, i.e., Γ′

i\Γi 6= ∅, she cannot
finish Γ′

i when selected. If user i reports Γ′
i ⊂ Γi with ci, the probability of

user i being selected will not increase according to our mechanism. The case
where user i misreports both Γi and ci is challenging, because calculating
the true cost of Γ′

i ⊂ Γi is still an open question.

be replaced by user 3 and if she bid $3 she will take user
3’s place. We can see that, after many rounds of auction, user
5 might narrow down user 3’s bid range, and even infer the
exact value in some cases. This inference attack is practical in
most crowdsensing applications, e.g., [25, 38], where tasks are
publicized periodically for collecting dynamic sensing data.

C. Desired Properties

We consider the following important properties.

• Computational Efficiency: A mechanism is computation-
ally efficient if it terminates in polynomial time.

• Individual Rationality: A mechanism is individually ra-
tional if each user will have a non-negative utility when
bidding her true cost.

• Truthfulness: A mechanism is truthful if any user’s utility
is maximized when bidding her true cost.

• Social Cost Minimization: A mechanism achieves social
cost minimization if the total cost of the users in S is
minimized subject to certain constraints on S.

In addition, we consider users’ bid privacy preservation.
Definition 3.1: (Differential Privacy [8]). A randomized

function M has ε-differential privacy if for any two input sets
A and B with a single input difference, and for any set of
outcomes O ⊆ Range(M),

Pr[M(A) ∈ O] ≤ exp(ε)× Pr[M(B) ∈ O].

In this paper, the randomized function M is corresponding to
our framework, and Range(M) is the outcome space of the
framework. One relaxation of differential privacy is as follows.

Definition 3.2: (Approximate Differential Privacy [9]). A
randomized function M gives (ε, δ)-differential privacy if for
any two input sets A and B with a single data difference, and
for any set of outcomes O ⊆ Range(M),

Pr[M(A) ∈ O] ≤ exp(ε)× Pr[M(B) ∈ O] + δ.

The truthfulness of an auction mechanism is guaranteed by
the following theorem.

Theorem 1: [39] Let Pri(z) denote the probability that
bidder i is selected when her bid is z. A mechanism with bids−→
b and payments −→p is truthful in expectation if and only if,

for any bidder i,
1) Pri(z) is monotonically non-increasing in bi.
2)
∫∞

0
Pri(z)dz <∞.

3) The expected payment satisfies E [pi] = biPri(bi) +∫∞
bi
Pri(z)dz.

Next, we introduce the concept of the exponential mecha-
nism and its properties. In the literature of differential privacy,
the exponential mechanism is often used to design privacy-
preserving mechanisms. A key component of the exponential
mechanism is the score function q(A, o), which maps the input
set A and an outcome o ∈ O to a real-valued score. The score
represents how good the outcome o is for the input set A
compared with the optimal outcome.



Given an outcome space O, an input set A, a score function
q and a small constant ε, the exponential mechanism εεq(A)
chooses an outcome o ∈ O with probability

Pr
[
εεq(A) = o

]
∝ exp (εq(A, o)) .

The exponential mechanism has the following properties.
Theorem 2: [24] The exponential mechanism gives 2ε∆-

differential privacy, where ∆ is an upper-bound of the differ-
ence of any two input sets.

Theorem 3: [13] The exponential mechanism, when used
to select an output o ∈ O, εεq(A) yields 2ε∆-differential
privacy, letting OOPT be the subset of O achieving q(A, o) =
max
r
q(A, o), ensures that

Pr
[
q
(
A, εεq(A)

)
< max

o
q(A, o)− ln(|O|/|OOPT |)/ε− t/ε

]
≤ exp(−t).

D. Design Objective

The goal of our framework design is to minimize the so-
cial cost while achieving computational efficiency, individual
rationality, truthfulness and differential privacy. Solving the
minimization problem itself, referred to as the social cost
minimization (SCM) problem, is challenging because SCM is
NP-hard (proved by Theorem 4), let alone combining with the
other three properties. Next, we give the formal formulation
of the SCM problem.

SCM problem: Given a task set T and a user set U , the
goal of the SCM problem is to find a subset S ⊆ U , such that

minC(S) =
∑
i∈S

ci, s.t.
⋃
i∈S

Γi = T .

Theorem 4: The SCM problem is NP-hard.
Proof: We prove the NP-hardness of the SCM problem

by a polynomial time reduction from the minimum weighted
set cover (MWSC) problem, which is NP-hard [6].

The MWSC problem is defined as follows: Given a universe
set U and a set S = {s1, s2, . . . , sn} of subsets of U , i.e.,
si ⊆ U and the weight of each si is w(si), find the minimum
weight subset of S whose union is U .

Next, we construct an instance of the SCM problem from an
instance of the MWSC problem in polynomial time. We create
a task in the task set T for each element in U . There is a user
in the user set U corresponding to each element in S, where
Γi consists of tasks corresponding to si and ci = w(si). It is
straightforward to see that there is a solution to the MWSC
problem if and only if there is a solution to the SCM problem.
Therefore, the theorem SCM problem is NP-hard.

Since the SCM problem is NP-hard, we aim to find an
approximate solution.

IV. BIDGUARD: DIFFERENTIALLY PRIVATE AUCTION
FRAMEWORK

In this section, we design and analyze BidGuard, a differ-
entially private auction framework.

A. Design Rationale

BidGuard integrates the exponential mechanism with the
reverse auction to achieve computational efficiency, individual
rationality, truthfulness, differential privacy and approximate
social cost minimization. In our framework, users are selected
iteratively. In each iteration, redundant users are eliminated
and each remaining user is assigned a probability of being
selected. The framework then selects one of them as the
winner according to the probability distribution. Specifically,
the probability of a user to be selected is set according to
a specific criterion. The above processes repeats until all the
sensing tasks can be completed by the selected users. Finally,
the framework computes the payment to each winner.

B. Design of BidGuard

In this section, we will describe BidGuard in detail. As
illustrated in Algorithm 1, BidGuard consists of three phases:
user screening, winner selection, and payment determination.
It executes these three phases iteratively until all the sensing
tasks can be completed by the selected users.

Algorithm 1: BidGuard
Input : A set of sensing tasks T , a set of users U ,

submitted task-bid profile
−→
β , and differential

privacy parameters ε > 0 and δ ∈ (0, 1
2 ].

Output: A set of winners S and a payment profile −→p .
1 S ← ∅, Tc ← ∅, R ← U ;
2 foreach i ∈ U do pi ← 0;
3 while Tc 6= T do
4 foreach i ∈ R do
5 if Γi ⊆ Tc then R ← R \ {i} ;
6 end
7 foreach i ∈ R do
8 Calculate the probability Pri(bi) of each user

being selected according to the score function;
9 end

10 Select one user randomly, denoted by i′, according to
the computed probability distribution;

11 S ← S ∪ {i′}, Tc ← Tc ∪ Γi′ , R ← R \ {i′} ;
12 end

13 foreach i ∈ S do pi ← bi +

∫ bmax
bi

Pri(z)dz

Pri(bi)
;

14 return S and −→p .

1) User Screening Phase
BidGuard will eliminate all the redundant users, whose task

set can be completed by the currently selected users. The set
of remaining users is denoted by R.
2) Winner Selection Phase

BidGuard will assign each user i ∈ R a probability of
being selected as follows. It first computes a criterion r(βi),
which is the bid divided by the number of tasks that cannot
be completed by the currently selected users, i.e.,

r(βi) =
bi

|Γi − Tc|
, (1)



where Tc is the set of tasks that can be completed by
the currently selected users. BidGuard selects the user with
the lowest r(βi) in each iteration. To apply the exponential
mechanism, we need to design a score function, which is a
non-increasing function of r(βi). The probability of each user
of being selected is set to the value of the score function.
3) Payment Determination Phase

Let Pri(z) denote the probability of user i being selected
with bid z. According to Theorem 1, we calculate the payment
to winner i is

pi = bi +

∫ bmax

bi
Pri(z)dz

Pri(bi)
.

C. Design of Score Functions

To apply the exponential mechanism, we need to design a
score function. Specifically, we design two score functions,
linear score function and log score function. We will show
that they have different theoretical bounds on the social cost
(Section IV-D) and performance in simulations (Section V).

Linear score function: fLIN (x) = 1 − x. For any bidder
i ∈ R, the probability of being selected in each iteration is

Pri(bi) ∝

{
exp

(
ε′(1− bi

bmax|Γi−Tc| )
)
, if i ∈ R;

0, otherwise,

where ε′ = ε/(e∆ ln(e/δ)). Note that in order to guarantee
the value of the score function is nonnegative, we normalize
r(βi), i.e., bi

bmax|Γi−Tc| . Then the probability is

Pri(bi) =


exp
(
ε′(1− bi

bmax|Γi−Tc|
)
)

∑
j∈R exp

(
ε′(1−

bj
bmax|Γj−Tc|

)
) , if i ∈ R;

0, otherwise.
(2)

Log score function: fLOG(x) = log1/2 x. For any bidder
i ∈ R, the probability of being selected in each iteration is

Pri(bi) ∝

{
exp

(
ε′ log1/2

bi
bmax|Γi−Tc|

)
, if i ∈ R;

0, otherwise,

where ε′ = ε/(e ln(e/δ) log1/2 (1/(1 + ∆))). We also normal-
ize the r(βi), i.e., bi

bmax|Γi−Tc| to guarantee the value of the
score function is nonnegative. Then the probability is

Pri(bi) =


exp
(
ε′ log1/2

bi
bmax|Γi−Tc|

)
∑

j∈R exp
(
ε′ log1/2

bj
bmax|Γj−Tc|

) , if i ∈ R;

0, otherwise.
(3)

Throughout the rest of this paper, we denote the BidGuard
with linear score function fLIN and log score function fLOG
by LIN and LOG, respectively.

D. Analysis of BidGuard

In this section, we first analyze the properties of LIN.
Theorem 5: LIN achieves computational efficiency, indi-

vidual rationality, truthfulness, and (ε(e− 1)/e, δ)-differential
privacy, where ε > 0 and δ ∈ (0, 1

2 ] are constants, e is the
base of the natural logarithm. In addition, it has social cost
at most HKOPT + gK · O(lnn) with probability at least

1 − 1/nO(1), where HK =
∑K
j=1 1/j, K is the size of the

largest user task set, OPT is the optimal social cost, g is the
size of the optimal user set, and n is the number of users.

Proof: We first prove the computational efficiency. The
outer while-loop (Lines 3-12) will run at most m iterations
since there are m tasks. Meanwhile, the two inner for-loops
(Lines 4-6) and (Lines 7-9) will run at most n iterations
since there are n users. Therefore, the total computational
complexity of LIN is O(mn). The individual rationality is
guaranteed by the fact that the payment to each winner i is

pi = bi +

∫ bmax
bi

Pri(z)dz

Pri(bi)
≥ bi. In order to prove the rest of

this theorem, we prove the following lemmas.
Lemma 4.1: LIN is truthful.

Proof: According to (2) and (3), the probability Pri(bi)
of user i being selected in BidGuard is monotonically non-
increasing in her bid bi. In addition, no bid is greater
than bmax in our model. Thus we have

∫∞
0
Pri(z)dz =∫ bmax

0
Pri(z)dz <∞. Furthermore, we have

E[pi]

= (1− Pri(bi))× 0 + Pri(bi)× (bi +

∫ bmax

bi
Pri(z)dz

Pri(bi)
)

= biPri(bi) +

∫ ∞
bi

Pri(z)dz.

Then, according to Theorem 1, the lemma holds.
Lemma 4.2: For any constants ε > 0 and δ ∈ (0, 1

2 ], LIN
achieves (ε(e − 1)/e, δ)-differential privacy, where e is the
base of the natural logarithm.

Proof: Let
−→
β and

−→
β′ be two input task-bid profiles that

differ in any user d’s bid, respectively. Let M(
−→
β ) and M(

−→
β′)

denote the sequences of users selected by LIN with inputs−→
β and

−→
β′ , respectively. We show that LIN, even revealing

the order in which the users are chosen, achieves differential
privacy for an arbitrary sequence of users I = i1, i2, . . . , il of
arbitrary length l. We consider the relative probability of LIN
for given task-bid inputs

−→
β and

−→
β′ :

Pr
[
M(
−→
β ) = I

]
Pr
[
M(
−→
β′) = I

] =

l∏
j=1

exp

(
ε′(1−

bij
bmax|Γij

−Tc|
)

)
∑

i∈Uj
exp
(
ε′(1− bi

bmax|Γi−Tc|
)
)

exp

(
ε′(1−

b′
ij

bmax|Γij
−Tc|

)

)
∑

i∈Uj
exp

(
ε′(1−

b′
i

bmax|Γi−Tc|
)

)

=

l∏
j=1

exp
(
ε′(1− bij

bmax|Γij
−Tc| )

)
exp

(
ε′(1−

b′ij
bmax|Γij

−Tc| )

)

×
l∏

j=1

∑
i∈Uj exp

(
ε′(1− b′i

bmax|Γi−Tc| )
)

∑
i∈Uj exp

(
ε′(1− bi

bmax|Γi−Tc| )
) ,

where Uj = U \ {i1, i2, . . . , ij−1} and the first equation is
based on (2). We then prove this lemma by cases. When bd >
b′d, the second product is at most 1 because the factor for any



j ∈ [1, l] is less than 1 if d ∈ Uj and equal to 1 otherwise.
Therefore, we have

Pr
[
M(
−→
β ) = i1, i2, . . . , il

]
Pr
[
M(
−→
β′) = i1, i2, . . . , il

] ≤ exp
(
ε′(1− bd

bmax|Γd−Tc| )
)

exp
(
ε′(1− b′d

bmax|Γd−Tc| )
)

= exp

(
ε′

b′d − bd
bmax|Γd − Tc|

)
6 exp (ε′(b′d − bd))
6 exp(ε′∆).

When bd 6 b′d, the first product is at most 1 because the
factor for any j ∈ [1, l] is less than 1 if ij = d and equal to
1 otherwise. In the remainder of the proof, we focus on this
case. Therefore, we have

Pr
[
M(
−→
β ) = i1, i2, . . . , il

]
Pr
[
M(
−→
β′) = i1, i2, . . . , il

]
6

l∏
j=1

∑
i∈Uj exp

(
ε′(1− b′i

bmax|Γi−Tc| )
)

∑
i∈Uj exp

(
ε′(1− bi

bmax|Γi−Tc| )
)

=

l∏
j=1

∑
i∈Uj exp

(
ε′ θi
|Γi−Tc|

)
exp

(
ε′(1− bi

bmax|Γi−Tc| )
)

∑
i∈Uj exp

(
ε′(1− bi

bmax|Γi−Tc| )
)

=

l∏
j=1

Ei∈Uj

[
exp

(
ε′

θi
|Γi − Tc|

)]

6
l∏

j=1

Ei∈Uj [exp(ε′θi)] ,

where θi = b′i − bi. For all x 6 1, ex 6 1 + (e − 1) · x.
Therefore, for all ε′ 6 1, we have

l∏
j=1

Ei∈Uj [exp(ε′θi)] 6
l∏

j=1

Ei∈Uj [1 + (e− 1)ε′θi]

6 exp

(e− 1)ε′
l∑

j=1

Ei∈Uj [θi]

 .

Lemma B.2 in [13] implies that Pr[
∑l
j=1Ei∈Uj [θi] >

∆ ln(e/δ)] 6 δ. Let O denote the outcome space, where each
o ∈ O is a sequence of users i1, i2, · · · , il. We split O into
two sets O′ and O′′, where O′ = {o ∈ O|

∑l
j=1Ei∈Uj [θi] ≤

∆ ln(e/δ)} and O′′ = O \ O′. Thus we have

Pr
[
M(
−→
β ) ∈ O

]
=

∑
o∈O

Pr
[
M(
−→
β ) = o

]
=

∑
o∈O′

Pr
[
M(
−→
β ) = o

]
+
∑
o∈O′′

Pr
[
M(
−→
β ) = o

]
≤

∑
o∈O′

exp ((e− 1)ε′∆ ln(e/δ))Pr
[
M(
−→
β′) = o

]
+ δ

≤ exp((e− 1)ε′∆ ln(e/δ)Pr
[
M(
−→
β′) ∈ O

]
+ δ

= exp(ε(e− 1)/e)Pr
[
M(
−→
β′) ∈ O

]
+ δ.

The lemma holds.
Lemma 4.3: With probability at least 1−1/nO(1), LIN has

social cost at most HKOPT + gK · O(lnn), where HK =∑K
j=1 1/j, K is the size of the largest user task set, i.e., K =

maxi∈U |Γi|, OPT is the optimal social cost, g is the size of
the optimal user set, and n is the number of users.

Proof: Consider any task-bid pair βi = (Γi, bi) of user
i in the optimal solution S∗, where Γi = {tj , tj−1, . . . , t1}.
The social cost of the optimal solution is OPT =

∑
i∈S∗ bi.

For truthful mechanisms, we have bi = ci. Without loss of
generality, suppose the task in Γi is completed in the order
of tj , tj−1, . . . , t1. At the start of the iteration in which the
algorithm completes task tk of Γi, at least k tasks of Γi remain
uncovered. Thus, if user i is selected in this iteration, the cost
per task is at most bi

k . According to Theorem 3, by taking
t = O(lnn), we have the cost per task of our framework is at
most bi

k +O(lnn) with a probability of at least 1− 1/nO(1).
Summing over j, the total amount of social cost of Γi is at
most biHK + K · O(lnn), with a probability of at least 1 −
1/nO(1). Summing over i ∈ S∗, the social cost is at most∑
i∈S∗(biHK +K ·O(lnn)) = HKOPT + |S∗|K ·O(lnn),

with a probability of at least 1− 1/nO(1).
For LOG we have the following properties. The proofs are

similar to those for LIN, and thus omitted.
Theorem 6: LOG achieves computational efficiency, indi-

vidual rationality, truthfulness, and (ε(e− 1)/e, δ)-differential
privacy, where ε > 0 and δ ∈ (0, 1

2 ] are two constants, e is the
base of the natural logarithm. In addition, it has social cost
at most 2tHKOPT with probability at least 1− e−t, for any
constant t > 0 and HK =

∑K
j=1 1/j, where K is the size of

the largest user task set, and OPT is the optimal social cost.
Remarks: We have demonstrated in Theorem 4 that the

minimum weighted set cover problem can be reduced to the
SCM problem. It is well known that the best-possible polyno-
mial time approximation algorithm is an HK-approximation
algorithm for the weighted set cover problem [4], where
HK is the K-th harmonic number. LOG has social cost
at most 2tHKOPT , where t is a constant, and thus it is
asymptotically optimal. Even though LIN cannot be proved to
be asymptotically optimal in terms of the social cost, we will
show in Section V that it achieves better privacy protection
than LOG.



V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of BidGuard
and compare it with TRAC [11], which is closest to our work
in terms of the design objective, but does not protect users’
bid privacy.

A. Simulation Setup
All the evaluation results are based on a real data set of taxi

traces. The dataset consists of the traces of 320 taxi drivers,
who work in the center of Rome [2]. Each taxi driver has a
tablet that periodically (every 7s) retrieves the GPS locations
(latitude and longitude) and sends it with the corresponding
driver ID to a central server.

We consider a crowdsensing system where the task is to
measure the cellular signal strength at specific locations. Each
user can sense the cellular signal strength within the area
centered at the user’s location with a radius of 30m. Tasks are
represented by GPS locations reported by taxis. We assume
that the driver of each taxi is a user. We preprocess the
tasks such that each task can be sensed by at least two users
according to our system model.

We use three metrics to evaluate the performance of Bid-
Guard: social cost, total payment and privacy leakage. The
social cost, as defined in Section III, refers to the total cost
of all selected users. The total payment measures the payment
paid by the platform to all selected users. We first compare
the social cost and total payment with TRAC. Then we
compare the social cost of BidGuard with the optimal social
cost. We define privacy leakage to quantitatively measure the
differential privacy performance of BidGuard.

Privacy Leakage: Given a mechanism M , let
−→
β and

−→
β ′ be

two task-bid profiles, which only differ in one user’s bid. Let
M(
−→
β ) and M(

−→
β ′) denote the outcome of M with input

−→
β

and
−→
β ′, respectively. The privacy leakage, denoted by PL, is

defined as the Kullback-Leibler divergence of the two outcome
probability distributions based on

−→
β and

−→
β ′, i.e.,

PL =
∑
o∈O

Pr
[
M(
−→
β ) = o

]
ln

 Pr
[
M(
−→
β ) = o

]
Pr
[
M(
−→
β ′) = o

]
 . (4)

Note that the smaller the PL value is, the harder it is to
distinguish the two task-bid profiles, and thus the better the
privacy preserving performance is achieved.

In our simulations, we randomly select locations as the
sensing tasks according to the settings. We assume the bids of
users are randomly distributed over [1, 50]. We generate users’
bids according to two different distributions, i.e., uniform
distribution and normal distribution. To evaluate the impact of
the number of sensing tasks on the performance metrics, we
set the number of users to 200 and vary the number of sensing
tasks from 20 to 60 with a step of 10. To evaluate the impact
of the number of users on the performance metrics, we set the
number of sensing tasks to 150 and vary the number of users
from 100 to 300 with a step of 50. For the differential privacy
parameters, we set ε = 0.1 and δ = 0.25. All the results are
averaged over 1000 independent runs for each setting.

B. Evaluation of Social Cost

We first compare the social cost of BidGuard with that of
TRAC. The impact of the number of sensing tasks on the
social cost under uniform distribution and normal distribution
is shown in Fig. 1(a) and Fig. 1(b), respectively. For both
distributions, the social cost of TRAC and that of BidGuard
both increase when the number of sensing tasks grows. This
is because with more sensing tasks, the platform may select
more users incurring a higher social cost. We can also see that
the social cost of TRAC is smaller than that of BidGuard. This
is because TRAC is determinate to select the user with lowest
criterion value (defined in (1)) in each iteration. In contrast,
since BidGuard is randomized, it cannot always guarantee to
select the user with the lowest criterion value in each iteration.
Besides, the social cost of LOG is smaller than that of LIN
for both uniform distribution and normal distribution. This is
because LOG prefers to select users with low bid, as the log
score function will give more probability of being selected to
low-bid users.
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Fig. 1. Impact of the number of sensing tasks on the social cost
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Fig. 2. Impact of the number of users on the social cost

Fig. 2(a) and Fig. 2(b) depict the impact of the number
of users on the social cost under uniform distribution and
normal distribution, respectively. We can see that, no matter
what the distribution is, the social cost decreases slightly when
the number of users increases for both TRAC and BidGuard.
This is because, with more users, the platform can find more
low-cost users to complete the sensing tasks. The social cost
of TRAC is smaller than that of BidGuard. The reason is same
as explained for Fig. 1. Meanwhile, the social cost of LOG is
smaller than that of LIN for the same reason as above.

In Fig. 3, we compare the social cost of BidGuard and
TRAC with the optimal solution, which is denoted by OPT. In
this case, we only consider the uniform distribution, because
the results will have similar pattern for the normal distribution
according to Fig. 1 and Fig. 2. Since finding the optimal
solution takes exponential time, we set the number of the users
to 10 for Fig. 3(a), and set the number of sensing tasks to 4



for Fig. 3(b). We can see that the social cost in Fig. 3(a)
and Fig. 3(b) have the same pattern as shown in Fig. 1(a) and
Fig. 2(a), respectively. The reason is similar to those explained
for Fig. 1(a) and Fig. 2(a). Furthermore, we can observe that
BidGuard sacrifices the social cost for the users’ bid privacy,
compared to TRAC and the optimal solution. Note that in
Fig. 3(b), the social cost of TRAC is very close to that of OPT.
This is because TRAC is an HK-approximation algorithm,
where Hk ≈ 2.34 in this figure.
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Fig. 3. Comparison of BidGuard, TRAC and OPT

C. Evaluation of Total Payment

In Fig. 4 and Fig. 5, we plot the impact of the number of
sensing tasks and the impact of the number of users on the
total payment under two distributions, respectively. The results
show that the total payment of both TRAC and BidGuard
follow the same pattern as the social cost. In addition, the
LOG has smaller total payment than that of LIN because the
log score function could select users with lower social cost as
shown in Fig. 1 and Fig. 2.
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Fig. 4. Impact of the number of sensing tasks on the total payment
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Fig. 5. Impact of the number of users on the total payment

D. Evaluation of Privacy Leakage

Next, we evaluate BidGuard in terms of privacy leakage.
Since TRAC is deterministic, the privacy leakage is undefined
according to (4). We only consider the uniform distribution in
this case because the normal distribution has similar patterns.
Fig. 6(a) and Fig. 6(b) plot the impact of the number of

sensing tasks and the number of users on the privacy leakage,
respectively. We observe that the privacy leakage values in
both figures are very small which indicates that BidGuard
achieves a good differential privacy.

Fig. 6(a) shows the privacy leakage of BidGuard when the
number of sensing tasks varies. We see that the privacy leakage
of LIN is always smaller than that of LOG, which indicates
that LIN has better privacy protection performance than LOG.
This is because the linear score function treats the probability
of every outcome uniformly, however, the log score function
gives more probability to the outcome with low social cost.
We do not observe a pattern of the privacy leakage when
the number of tasks increases. The reason is, according to
the definition of privacy leakage, the difference between the
probabilities of two outcomes to be selected is independent of
the number of sensing tasks.

In Fig. 6(b), we can see the impact of the number of users on
the privacy leakage of BidGuard. Note that the privacy leakage
value decreases when the number of users increases for both
LIN and LOG. This is because the probability of each outcome
decreases as the number of users increases. Specifically, the
more users in the system, the more possible outcomes of
BidGuard, the less difference between the probabilities of
two outcomes to be selected, and thus the better differential
privacy performance. We can also see the privacy protection
performance of LIN is better than that of LOG. The reason
for this is similar to that discussed above.

Fig. 6(c) shows the impact of the differential privacy pa-
rameter ε on the privacy leakage. The results show that the
value of ε has more impact on the privacy leakage for LOG
than that of LIN. This is because the log score function is
more sensitive than the linear score function. For LOG, the
privacy leakage increases slightly when the value of ε grows.
This is because, theoretically, the lower the ε is, the better the
differential privacy is achieved, and thus the lower privacy
leakage. Meanwhile, it is easy to observe that the privacy
leakage of LIN is smaller than that of LOG. This can also
be explained by the same reason for Fig. 6(a).

Fig. 6(d) illustrates the tradeoff between the social cost
and the privacy leakage of LOG. We observe that the privacy
leakage decreases as the decreasing of ε. The reason is similar
to that discussed for Fig. 6(c). However, this improvement in
privacy comes at a cost of the increased social cost.

Remarks: Compared with TRAC, which does not protect
users’ bid privacy, BidGuard sacrifices the social cost and
payment for the users’ bid privacy. Besides, LIN outperforms
LOG in terms of privacy protection, while LOG has lower
social cost and payment.

VI. CONCLUSION

In this paper, we have proposed BidGuard, the first gen-
eral framework for privacy-preserving crowdsensing incen-
tive mechanisms, which achieves computational efficiency,
individual rationality, truthfulness, approximate social cost
minimization, and differential privacy. We designed two score
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Fig. 6. Evaluation of privacy leakage

functions, linear and log, to realize the framework. Specifi-
cally, the BidGuard with log function is asymptotically optimal
in terms of the social cost. Extensive simulations evaluate the
performance and validate the desired properties of BidGuard.
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