
On the Secure Degrees of Freedom of the K-user
Interference Channel with Delayed CSIT

Mohamed Seif Ravi Tandon Ming Li
Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ, 85721
Email: {mseif, tandonr, lim}@email.arizona.edu

Abstract—In this paper, the K-user interference channel with
confidential messages is considered with delayed channel state
information at transmitters (CSIT). We propose a novel secure
transmission scheme in which the transmitters carefully mix
information symbols with artificial noises to ensure confidential-
ity. Achieving confidentiality is challenging due to the delayed
nature of CSIT, and the distributed nature of the transmitters.
Our scheme works over two phases: phase one in which each
transmitter sends information symbols mixed with artificial
noises, and repeats such transmission over multiple rounds. In the
next phase, each transmitter uses delayed CSIT of the previous
phase and sends a function of the net interference and artificial
noises (generated in previous phase), which is simultaneously
useful for all receivers. These phases are designed to ensure
the decodability of the desired messages while satisfying the
confidentiality constraints. The proposed scheme achieves a sum
secure degrees of freedom (SDoF) of at least 1

2
(
√
K − 6). To

the best of our knowledge, this is the first result on the K-
user interference channel with confidential messages and delayed
CSIT that achieves a SDoF which scales with K.

I. INTRODUCTION

Delayed CSIT can impact the spectral efficiency of wireless
networks, and this problem has received significant recent
attention. Maddah-Ali and Tse in [1] studied the K-user
broadcast channel (BC) with delayed CSIT, and showed that
the optimal sum degrees of freedom (DoF) is given by
K/(1 + 1

2 + · · · + 1
K ) which is strictly greater than one

DoF (with no CSIT) and less than K DoF (with perfect
CSIT). Interference channels (IC) with delayed CSIT have
been studied in several works such as [2], [3]. The main
drawback of these schemes is that the achievable DoF does
not scale with the number of users. In a recent work [4], a
novel transmission scheme is presented which achieves b

√
Kc
2

DoF for the K-user IC with delayed CSIT. The result in [4]
is particularly interesting, as it shows that the sum DoF for
the K-user IC does scale with the number of users, even with
delayed CSIT.

Another important aspect in wireless networks is ensuring
secure communication between transmitters and receivers.
Many seminal works in the literature studied the secure capac-
ity regions for multi-user settings such as wiretap, broadcast
and interference channels (see comprehensive surveys [5]–[7]).
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Table 1: Summary of results on the K-user BC and IC with and
without confidential messages.

Since the exact secure capacity regions for many multi-user
networks are not known, secure degrees of freedom (SDoF)
for a variety of models have been studied (e.g., [8], [9]). More
specifically, for the K-user BC with confidential messages
(CM), the authors in [9] showed that the optimal sum SDoF
with delayed CSIT is given by K/(1+ 1

2+· · ·+ 1
K +K−1

K ). The
achievability scheme is based on a modification of the scheme
in [1] along with a key generation method which uses delayed
CSIT. For the K-user interference channel with confidential
messages under perfect CSIT, Xie and Ulukus showed in [10]
that the optimal sum SDoF is K(K−1)

2K−1 . There are various other
works for different CSIT assumptions, such as wiretap channel
with no eavesdropper CSIT [11], and broadcast channel with
alternating CSIT [12].

Contributions: In this work, we consider the K-user in-
terference channel with confidential messages (IC-CM) and
delayed CSIT. We focus on answering two fundamental ques-
tions: (a) are positive SDoF achievable for the IC with delayed
CSIT?, and (b) if yes, then does the SDoF scale with K?
We answer the above two questions in the affirmative by
showing that positive SDoF are indeed achievable, and the
achievable sum SDoF is at least 1

2 (
√
K − 6). This result

highlights the fact that in presence of delayed CSIT, there is
almost no DoF scaling loss due to confidentiality constraints
compared to the no secrecy case [4]. Our transmission scheme
is inspired by the work of [4] in terms of the organization of
the transmission phases. One of the main differences is that
the transmitters mix their information symbols with artificial
noises so that the signals at each unintended receiver are
completely immersed in the space spanned by artificial noise.
However, this mixing must be done with only delayed CSIT,
and it should also allow successful decoding at the respective
receiver. The equivocation analysis of the proposed scheme is



non-trivial due to the multi-phase nature of the scheme using
delayed CSIT. Table 1 summarizes the main results for the BC
and IC models under two scenarios: (a) without confidential
messages, (b) with confidential messages, under three CSIT
assumptions (perfect, delayed and no CSIT).

II. SYSTEM MODEL

We consider the K-user interference channel with confi-
dential messages and delayed CSIT (shown in Fig. 1). The
input-output relationship at time slot t is

yk(t) = hkk(t)xk(t) +

K∑
j=1,j 6=k

hkj(t)xj(t) + nk(t), (1)

where yk(t) is the signal received at receiver k at time t,
hkj(t) ∼ CN (0, 1) is the channel coefficient at time t between
transmitter j and receiver k, and xk(t) is the transmitted signal
from transmitter k at time t with an average power constraint
E{|xk(t)|2} ≤ P . The additive noise nk(t) ∼ CN (0, 1) at
receiver k is also i.i.d. across users and time. The channel
coefficients are assumed to be i.i.d. across time and users
and we assume perfect CSI at all the receivers. We further
assume that the CSIT is delayed, i.e., CSI is available at each
transmitter after one time slot without error.

Let Rk = log2(|Wk|)
n denote the rate of message Wk

intended for receiver k, where |Wk| is the cardinality of the
kth message. A (2nR1 , 2nR2 , . . . , 2nRK , n) code is described
by the set of encoding and decoding functions as follows:
the set of encoders at the transmitters are given as: {ψ(k)

t :
Wk × {H(t′)}t−1t′=1 → xk(t)}nt=1,∀k = 1, . . . ,K, where the
message Wk is uniformly distributed over the set Wk, and
H(t′) , {hkj(t′)}Kk=1,j=1 is the set of all channel gains at
time t′. The transmitted signal from transmitter k at time slot
t is given as: xk(t) = ψt(Wk, {H(t′)}t−1t′=1). The decoding
function at receiver k is given by the following mapping:
φ(k) : y

(n)
k × {H(t)}nt=1 →Wk, and the estimate of the mes-

sage at receiver k is defined as: Ŵk = φ(k)({yk(t), H(t)}nt=1).
The rate tuple (R1, . . . , RK) is achievable if there exists a
sequence of codes which satisfy the decodability constraints
at the receivers and the confidentiality constraints, i.e.,

lim
n→∞

sup Prob
[
Ŵk 6= Wk

]
≤ εn,∀k = 1, . . . ,K, (2)

lim
n→∞

sup
1

n
I
(
WK
−k; y

(n)
k |Wk,Ω

)
≤ εn,∀k = 1, . . . ,K, (3)

where εn → 0 as n→ 0, WK
−k , {W1,W2, . . . ,WK}\{Wk},

and Ω , {H(t)}nt=1 is the set of all channel gains over the
channel uses. The supremum of the achievable sum rate, Rs ,∑K

k=1Rk, is defined as the secrecy sum capacity Cs. The
optimal secure degrees of freedom (SDoF) is defined as:

SDoF∗sum , lim
P→∞

CS

log (P )
. (4)

In the next section, we present our main results on sum SDoF
with confidential messages and delayed CSIT.

Fig. 1: K-user interference channel with confidential messages and
delayed CSIT.

III. MAIN RESULTS AND DISCUSSIONS

Theorem 1: For the K-user interference channel with confi-
dential messages and delayed CSIT, the following secure sum
degrees of freedom is achievable:

SDoFach.
sum =

KR(K −R− 2)

(K − 1)× [R(R+ 1) +K]
, (5)

where,

R =

⌊−K +K ×
√

1 + (K−1)(K−2)
K

K − 1

⌋
. (6)

In the next Corollary, we simplify the above expression and
present a lower bound on the SDoFach.

sum. Complete proofs of all
the results are given in the full version of the paper in [13].

Corollary 1: For the K-user IC-CM with delayed CSIT ,
the achievable SDoF in (5) is lower bounded as

SDoFach.
sum >

1

2
(
√
K − 6). (7)

Remark 1: We next compare the secure sum DoF of Theorem
1 to that of [4] (i.e., without confidential messages). For the
K-user interference channel without secrecy constraints, the
achievable sum DoF in [4] is given as:

DoFach.
sum ≥

b
√
Kc
2

>
1

2
(
√
K − 1). (8)

Comparing this result with (7), we can conclude that the
scaling behavior of the sum SDoF is still attainable and there
is almost no scaling loss in the sum SDoF compared to the
no secrecy case, especially as K becomes large.

IV. PROOF OF THEOREM 1

In this Section, we present the main steps behind the proof
of Theorem 1 (for full details, we refer the reader to [13]).

A. Achievability scheme:

In this subsection, we present our secure transmission
scheme. We consider a transmission block of length RT +
K(n + 1)N = R(RnN + (n + 1)N ) + K(n + 1)N , where
R denotes the number of transmission rounds and N =
RK(K − 1), and n is an integer. The transmission scheme
works over two phases. The goal of each transmitter is to

2



Fig. 2: Summary of two-phase transmission scheme.

securely send T1 = Rnn + (n + 1)N − dRT+(K−1)(n+1)N

K−1 e
information symbols to its corresponding receiver. In the first
phase, each transmitter sends random linear combinations of
the T1 information symbols and the T2 = dRT+(K−1)(n+1)N

K−1 e
artificial noise symbols in T time slots. Each transmitter
repeats such transmission for R rounds, and hence, phase one
spans RT time slots. By the end of phase one, each receiver
applies local interference alignment on its signals to reduce
the dimension of the aggregate interference. In the second
phase, each transmitter knows the channel coefficients of
phase one due to delayed CSIT. Subsequently, each transmitter
sends a function of the net interference and artificial noises
(generated in previous phase) which is simultaneously useful
to all receivers. More specifically, each transmitter seperately
sends (n + 1)N linear equations of the past interference
to all receivers. Therefore, phase 2 spans K(n + 1)N time
slots. By the end of both phases, each receiver is able to
decode its desired T1 information symbols while satisfying the
confidentiality constraints. Therefore, the transmission scheme
spans RT + K(n + 1)N time slots. We next calculate the
achievable sum SDoF of this scheme as follows:

SDoFach.
sum = lim

n→∞

KT1
R(RnN + (n+ 1)N ) +K(n+ 1)N

,

(a)
> lim

n→∞

K
[
Rnn + (n+ 1)N × (K−R−1

K−1 )− (n+ 1)N − 1
]

R(RnN + (n+ 1)N ) +K(n+ 1)N
,

(b)
=

KR(K −R− 2)

(K − 1)× [R(R+ 1) +K]
, (9)

where in (a), we substituted the value of T1 and used the
property that dxe < x+ 1, and (b) follows by taking the limit
n→∞. Before we present the details of the scheme, we first
optimize the achievable SDoF with respect to the number of
rounds R and also simplify the above expression, which leads
to the expression in Corollary 1.

Lemma 1: The optimal R∗ which maximizes (9) is given by

R∗ =

⌊−K +K ×
√

1 + (K−1)(K−2)
K

K − 1

⌋
. (10)

See [13] for proof of Lemma 1. Fig. 2 depicts an overview of
the two transmission phases.

We now present the transmission scheme in full detail. For
our scheme, we collectively denote the L symbols transmitted
over L time slots as a super symbol and call this as the L

symbol extension of the channel. For the extended channel,
the signal at receiver k is given as

yk =

K∑
j=1

Hkjxj + nk, (11)

where xk is a L×1 column vector representing the L symbols
transmitted by transmitter k in L time slots. Hkj is a L× L
diagonal matrix representing the L symbol extension of the
channel as follows: Hkj = diag(hkj(1), hkj(2), . . . , hkj(L)).
Now we proceed to the description of the proposed scheme.

Phase 1– Interference creation with information symbols and
artificial noises

Recall that the goal of each transmitter is to send T1
information symbols securely to its respective receiver. This
phase is comprised of R rounds, where, in each round, every
transmitter j sends linear combinations of the T1 information
symbols sj ∈ CT1×1, mixed with T2 artificial noises uj ∈
CT2×1, where the elements of uj are drawn from complex-
Gaussian distribution with average power P . Hence, the signal
sent by transmitter j in each round r can be written as

xj = Vj

[
sj
uj

]
, ∀j = 1, 2, . . . ,K, (12)

where Vj ,∀j = 1, 2, . . . ,K is a random mixing matrix of di-
mension T×T whose elements are i.i.d. drawn from complex-
Gaussian distribution with zero mean and unit variance at
transmitter j. The matrix Vj ,∀j = 1, 2, . . . ,K is known at
all the terminals. The received signal at receiver k for round
r ∈ {1, 2, . . . , R} is given by

yr
k =

K∑
j=1

Hr
kjxj + nr

k. (13)

Hence, phase one spans RT time slots.
Interference aggregation at receivers

At the end of phase one, each receiver k has the signals
yk = {yr

k}Rr=1, over R rounds. Each receiver performs a linear
post-processing of its received signals in order to align the
aggregate interference (generated from symbols and artificial
noises) from the (K−1) unintended transmitters. In particular,
each receiver multiplies its received signals in the rth block
with a matrix W (of dimension T × nN ) as follows:

ỹr
k = WHyr

k = WH

( K∑
j=1

Hr
kjxj + nr

k

)
, (14)

= WHHr
kkxk +

∑
j 6=k

WHHr
kjxj + WHnr

k. (15)

The goal is to design the matrix W and a matrix X, so that

WHHr
kj ≺ X, ∀k = 1, . . . ,K, k 6= j,∀r = 1, . . . , R, (16)

3



where X ∈ C(n+1)N×T . Here the notation A ≺ B means that
the set of row vectors of matrix A is a subset of row vectors
of B. To this end, we choose W and X as follows:

W =

 ∏
(r,m,i)∈S

(Hr(n
r
mi)

mi )H1 : 0 ≤ nrmi ≤ n− 1

 , (17)

X =

 ∏
(r,m,i)∈S

(Hr(n
r
mi)

mi )H1 : 0 ≤ nrmi ≤ n

H

, (18)

where 1 is the all ones column vector and the set S =
{(r,m, i) : ∀r ∈ {1, . . . , R},∀m 6= i ∈ {1, . . . ,K}}. Note
that the set S does not contain the channel matrix Hr

kk

that carries the information symbols intended to receiver k.
However, multiplying with any channel gain that appears
in W results in aligning this signal within the matrix X
asymptotically. It is worth noting that, the matrix X defines all
the possible interference generated by the transmitters at all
receivers. Hence, this choice of X and W guarantees that the
alignment condition (16) is satisfied. Therefore, the processed
signal in round r at receiver k can be written as

ỹr
k = WHHr

kkxk +
∑
j 6=k

WHHr
kjxj + WHnr

k, (19)

= WHHr
kkxk +

∑
j 6=k

Πr
kjXxj + WHnr

k, (20)

where Πr
kj ∈ CnN×(n+1)N is a selection and permutation

matrix. After phase 1, receiver k has RnN equations of T
desired symbols (composed of T1 information symbols and T2
artificial noises generated by the transmitter k) plus (K − 1)
interference terms, which are of dimension (n+ 1)N .

Phase 2– Re-transmission of aggregate interference with de-
layed CSIT

For the second phase, each transmitter k uses (n + 1)N

time slots to re-transmit the aggregated interference (Xxk)
generated in the first phase at the receivers, which is sufficient
to cancel out the interference term at receiver j 6= k, and to
provide additional (n+ 1)N equations of the desired symbols
to receiver k. Hence, this phase spans K(n+ 1)N time slots.
The transmitted signal from transmitter k is as follows:

zk = X xk,∀k = 1, 2, . . . ,K. (21)

Decoding at receivers:
At the end of phase 2, the interference at receiver k can be

removed by subtracting the terms
∑

j=1,j 6=k Πr
kjX xj from

the equalized signal ỹr
k, i.e., (ignoring the additive noise nr

k)

WHHr
kkxk = ỹr

k −
∑

j=1,j 6=k

Πr
kjX xj . (22)

Canceling the interference terms leaves each receiver k, ∀k ∈
{1, . . . ,K} with RnN useful linear equations in addition to
the (n+ 1)N useful equations from transmitter k (from phase

2). At the end of phase 2, receiver k will collectively obtain
the following signal,[

XH , (WHH1
kk)H , . . . , (WHHR

kk)H
]︸ ︷︷ ︸

Bk

H
Vk

[
sk
uk

]
. (23)

Therefore, at the end of phase 2, each receiver has enough lin-
ear equations of the desired symbols. To ensure decodability,
we need to prove that the matrix BkVk is full rank and hence
each receiver will be able to decode its desired T1 information
symbols. First, we notice that Vk is full rank matrix and hence
rank(BkVk) = rank(Bk). In [13], it is shown that the matrix
Bk is full rank which in turn ensures decodability.

B. Equivocation Analysis
We next present the equivocation analysis of the scheme.

The parameters T1 (number of information symbols) and T2
(number of artificial noises) are chosen carefully so that the
confidentiality constraints are satisfied as we prove next.

Lemma 2: For the proposed transmission scheme, the con-
fidentiality constraints are satisfied at each receiver, i.e.,

I({sj}Kj=1,j 6=i;yi|Ω) = o(log(P )),∀i = 1, 2, . . . ,K, (24)

where o(log(P )) represents a funtion of P such that
limP→∞ o(log(P ))/ log(P ) = 0. This means that the mutual
information between the un-intended data symbols and the
received signal at receiver i is within o(log(P )).

Without loss of generality, let us consider the first receiver.
We bound the mutual information between the unintended in-
formation symbols of transmitters 2, . . . ,K and the signal seen
at receiver 1 given the knowledge of the channel coefficients
Ω, as follows:

I(s2, s3, . . . , sK ;y1|Ω) ≤ I(s2, s3, . . . , sK ;y1, s1,u1|Ω),

(a)
= I(s2, s3, . . . , sK ;y1|Ω, s1,u1),

(b)
= I(s2, s3, . . . , sK ; ȳ1|Ω), (25)

where in (a), the term I(s2, s3, . . . , sK ; s1,u1|Ω) equals zero
since the information symbols s1 and artificial noise symbols
u1 are independent of the information symbols {sj}Kj=2. In
(b), ȳ1 is the effective remaining signal at receiver 1 after
removing the contributions of (s1,u1). We compactly write
the signal ȳ1 at receiver 1 over RT + (K − 1)(n+ 1)N time
slots as follows:

ȳ1 = A1Vq + n1, (26)

where the matrix A1 is written as a vertical concatenation
of matrices C and D, corresponding to the two transmission
phases as follows:

A1 =

[
C
D

]
, C =


H1

12 H1
13 · · · H1

1K

H2
12 H2

13 · · · H2
1K

...
... · · ·

...
HR

12 HR
13 · · · HR

1K

 ,
D = blkdiag(H̃12X, . . . , H̃1KX). (27)

4



The matrix C (of dimensions RT × (K − 1)T ) corresponds
to phase one, whose elements are i.i.d., and drawn from
a continuous distribution and hence, it is full rank almost
surely (i.e., rank(C) = RT ). The matrix D has a block
diagonal structure (each block matrix has dimensions of
(n+ 1)N × T ) since the transmission in phase two is done in
TDMA fashion. Furthermore, each block is a full rank matrix
(i.e., rank(H̃1jX) = rank(X) = (n + 1)N ,∀j = 2, . . . ,K)
[13]. Hence, the matrix A1 has dimensions (RT+(K−1)(n+
1)N )× (K − 1)T = (K − 1)T2 × (K − 1)T (see [13]). The
matrix V in (26) is defined as V = blkdiag(V2,V3, . . . ,VK),
which is a block diagonal matrix of dimensions (K − 1)T ×
(K − 1)T , comprised of the (K − 1) mixing matrices used
by the (K − 1) transmitters. Furthermore, we write q =[
sT2 uT

2 sT3 uT
3 · · · sTK uT

K

]T
, as a column vector of

length (K−1)T , which contains the information symbols and
the artificial noises sent by transmitters 2, . . . ,K.

Starting from (25), and (26), our goal is to show that
I(s2, s3, . . . , sK ; ȳ1|Ω) ≤ o(log(P )). Before we proceed, we
state two Lemmas which are proved in [13].

Lemma 3: Let A be a matrix with dimension M × N
and X = (x1, . . . , xN )T be a zero-mean jointly Gaus-
sian random vector with covariance matrix P I. Also, let
N = (n1, . . . , nM )T be a zero-mean jointly Gaussian random
vector with covariance matrix σ2I, independent of X, then

h(AX + N) = rank(A) log(P ) + o(log(P )). (28)

Lemma 4: Consider two matrices AM×N and BN×M
where M ≤ N . The elements of matrix B are chosen inde-
pendently from the entries of A at random from a continuous
distribution. Then, rank(AB) = rank(A) almost surely.

Use the definitions in (26), we now bound (25) as follows

I(s2, s3, . . . , sK ;y1|Ω) ≤ I(s2, s3, . . . , sK ; ȳ1|Ω),

= h(ȳ1|Ω)− h(ȳ1|s2, s3, . . . , sK ,Ω),

(a)
= h(A1Vq + n1)− h(A1Ṽq̃ + n1),

(b)
=
(

rank(A1V)− rank(A1Ṽ)
)

log(P ) + o(log(P )),

(c)
=
(

rank(A1)− rank(A1Ṽ)
)

log(P ) + o(log(P )),

(d)
= o(log(P )), (29)

where in (a), we defined q̃ =
[
uT
2 uT

3 · · · uT
K

]T
as the column vector of length (K − 1)T2, containing
the artificial noises of transmitters 2, . . . ,K, and Ṽ =
blkdiag(V2,u,V3,u, . . . ,VK,u), which is a block diagonal
matrix of dimensions (K−1)T ×(K−1)T2, where each Vi,u

(of size T × T2) is a sub-matrix of Vi corresponding to the
artificial noises. In step (b), we invoke Lemma 3 to express the
differential entropy terms in terms of rank(s) rank(A1V) and
rank(A1Ṽ), and in step (c), we used the fact that since V is
a random square (invertible) matrix, generated independently
from the entries of A1, hence rank(A1V) = rank(A1) almost
surely. Finally, for step (d), we invoke Lemma 4, which allows
us to claim that rank(A1Ṽ) = rank(A1) almost surely. The

step (d) is perhaps the most critical step in the equivocation
analysis, and central to the choice of parameters of the
scheme. In particular, to ensure that rank(A1Ṽ) = rank(A1),
where Ṽ is a non-square random matrix, we must satisfy
RT + (K − 1)(n + 1)N ≤ (K − 1)T2. The value for T2
(number of artificial noise symbols) is therefore chosen to
satisfy the above bound with equality, giving the intuition
behind its choice. Hence, from (29), we arrive at the proof
of Lemma 2, showing that the scheme satisfies confidentiality
constraints, and completing the proof of Theorem 1.

V. CONCLUSION

In this paper, we studied the K-user interference channel
with confidential messages and delayed CSIT. We showed
that the sum secure degrees of freedom (SDoF) is at least
1
2 (
√
K−6), which scales with the number of users. To achieve

this result, we have proposed a novel secure transmission
scheme which satisfies both confidentiality and decodability
constraints at receivers. To the best of our knowledge, this is
the first result showing scaling of SDoF for the interference
channel with confidential messages and delayed CSIT. An
interesting open problem is to obtain upper bounds on SDoF
with delayed CSIT.
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