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Abstract—We study the impact of untrusted relays on the
degrees of freedom of multi-antenna multi-hop networks. In par-
ticular, we consider the two user two-hop interference network,
where two source nodes want to send independent messages
securely to their designated receivers through the help of two
untrusted relays. The relays are considered untrusted in terms
of eavesdropping the messages sent by the sources. Moreover,
we also assume that the messages are confidential, i.e., each
receiver must not be able to decode the information meant
for the other receiver. We assume that all the terminals (i.e.,
sources, relays, and the receivers) are equipped with multiple
number of antennas. The goal of this work is to understand the
secure degrees of freedom (SDoF) region of this multi-hop MIMO
network under the two constraints of a) untrusted relays; and
b) confidential messages. To cope with the untrusted nature of
relays, we present achievable schemes in which both sources mix
their information symbols with artificial noises so that the signals
at each relay are completely immersed in the artificial noises
space. However, this mixing must be done carefully, so as to
ensure the feasibility of interference neutralization in the second
hop to allow successful decoding at the respective destination. To
this end, we devise transmission schemes based on interference
alignment and interference neutralization techniques. The main
contributions of this work are as follows: a) we present an upper
bound on the SDoF region as a function of the number of
antennas at the terminals, b) we present two achievable schemes,
the first scheme is based on secure interference alignment and
neutralization and is shown to be information theoretically
optimal when all terminals have the same number of antennas;
and a second scheme, based on secure sub-space alignment and
neutralization, which is shown to be optimal for another specific
antenna configuration. To the best of our knowledge, these are the
first results on multi-hop MIMO relay networks with untrusted
relays and confidential messages.

Index Terms: Degrees of freedom (DoF), secrecy, secure
degrees of freedom, multi-hop networks.

I. INTRODUCTION

Interference is considered as a fundamental barrier in wire-
less communications. Seminal works [1]–[3] were conducted
to advance our understanding of the capacity of single-hop
wireless networks and multi-hop networks. One of the seminal
works in multi-hop networks is [4] where the authors studied
the 2 × 2 × 2 interference network in which there are two
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source nodes, two relays and two destinations, each equipped
with a single antenna. It was shown in [4] that the cut-set
bound of 2 DoF can be achieved using aligned interference
neutralization. The authors in [5] extended the work of 2×2×2
interference network to the case of MIMO setting, and showed
the achievability of the cut-set bound using a combination
of beamforming and aligned interference neutralization tech-
niques. In [6], the authors generalized the work of the 2×2×2
interference network in [4] into K × K × K interference
network, and it was shown that K DoF are achieved via
aligned network diagonalization scheme.

Due to the nature of the wireless communications envi-
ronment, secrecy is a challenging problem, especially due to
the presence of eavesdroppers and/or unauthenticated nodes
in the network. Information theoretic secrecy for wireless
networks has been investigated for various channel models
[7]–[9]. Seminal works studied the secrecy degrees of freedom
in multi-hop networks (see, [10], [11]). The authors in [10]
have studied the sum secure degrees of freedom for the two-
unicast layered network with different number of hops and
connection configurations. They assumed that each source
node sends a message that is intended to its desired destination
node and kept secure from the unintended receivers. In [11], a
scenario was considered in which a source-destination pair are
communicating only through an untrusted intermediate relay
node. In their work, they imposed a cooperative jammer by
deliberately making the jammer send artificial noises along
with the information symbols from the source nodes to confuse
the relay and hence protecting the legitimate receiver. In [12],
the authors have studied this setup when there is an untrusted
relay in the presence of external eavesdropper. Also, each
source wants to send to the other a message and one of these
messages is enforced to be secured at the untrusted relay.
An achievable scheme based on rate splitting and stochastic
encoding was devised for this network.

To the best of our knowledge, the problem of multi-hop
networks with untrusted relay(s) and confidential messages
has not been settled yet. The contributions of this paper are
summarized as follows:
• First, we consider the (NS , NR, ND) MIMO multi-hop
network with NS antennas at sources, NR antennas at relays,
ND antennas at destinations. We present an upper bound on
the SDoF region of the MIMO multi-hop network and show
a matching scheme for certain antenna configurations.
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Fig. 1: System model for the 2× 2× 2 multi-hop network with NS

antennas at sources (S1, S2), NR antennas at relays (R1, R2) and
ND antennas at destinations (D1, D2). The relays are assumed to be
untrustworthy and the message Wi must be securely delivered to the
destination Di (i = {1, 2}).

• We then devise an achievable scheme based on asymptotic
secure interference alignment and interference neutralization
to achieve the upper bound on the SDoF for the MIMO setting
with antenna parameters: (NS , ND, NR) = (NS , N,N) and
N ≤ NS .
• Also, we devise another achievable scheme based on secure
sub-space alignment along with interference neutralization
for the MIMO setting (NS , ND, NR) = (N,N,NR) and
N ≤ NR. We show the optimality of this scheme when
NR = 4N

3 . The key distinction of the second scheme is that
it is not asymptotic in nature (i.e., does not require channel
extensions) and is still information-theoretically optimal for
the above antenna configurations.

II. SYSTEM MODEL

Notations: Boldface uppercase letters denote matrices and
boldface lowercase letters are used for vectors. C, R denote
the complex and real domain, respectively. For a matrix A
or a vector a their transpose are denoted by AT and aT ,
respectively.

We consider a layered 2 × 2 × 2 multi-hop network as
shown in Fig. 1, where each source node Si has a message Wi

to its corresponding destination node Di, ∀i ∈ {1, 2}. Each
source node Si has NS antennas, each relay node Ri has NR

antennas and each destination has ND antennas. We assume
there are no direct links between the sources and destinations
hence the messages from the sources are relayed over the
relays {Rk}2k=1. In the first hop, the received signals at relays
{Rk}2k=1 are as follows:

yRk
(t) = Fk1(t)x1(t) + Fk2(t)x2(t) + nRk

(t), (1)

where Fij(t) ∈ CNR×NS represents the complex Gaussian
channel coefficients of the first hop at time t between source
node Sj and relay node Ri, xi(t) ∈ CNS×1 is the transmitted
signal from Si and nRk

(t) ∈ CNR×1 is the additive noise,
which is assumed to be distributed i.i.d. over time, as circularly
symmetric Gaussian with zero mean and unit variance. In

the second hop, {Rk}2k=1 transmit symbols {xRk
}2k=1 to

{Dk}2k=1. The received signal at Dk is given by:

yDk
(t) = Gk1(t)xR1(t) +Gk2(t)xR2(t) + nDk

(t), (2)

where Gki(t) ∈ CND×NR is the complex Gaussian channel
coefficient for the second hop between relay node Ri and
destination node Dk, and nDk

(t) ∈ CND×1 is the receiver
circularly symmetric Gaussian noise with zero mean-unit
variance at time slot t. In addition, the transmitted signals from
the nodes have an average power constraint P . The relays are
assumed to be full-duplex (i.e., the relays can transmit and
receive signals at the same time but in different channels).
We assume perfect channel state information about the time-
varying channel coefficients at the transmitters, i.e. channel
coefficients for receiver i are known instantaneously and
without error. Specifically, the source nodes know the channels
for the first hop only, relays know the channels for both hops,
and destination nodes know the channels for the second hop
only. We consider secrecy constraints in the network, such that
the relays are enforced not to know the transmitted symbols
from the source nodes {Si}2i=1, and each destination Di is
considered as an eavesdropper for the symbols of the other
destination Dj , i 6= j. The relays are untrusted in terms of
eavesdropping the messages sent by the sources, but they are
trusted in terms of honestly forwarding the information and
correctly executing the communication protocol. Also, each
destination is considered an eavesdropper for the messages
intended for the other destination. A secure rate pair (R1, R2)
is achievable if there exists a sequence of codes that satisfy
the reliability constraints at the destinations such that:

Pr
[
Ŵi 6=Wi

]
≤ εn (3)

and the secrecy constraints such that:

I
(
W1,W2;Y

n
Ri

)
≤ εn, i = 1, 2, (4)

I
(
Wi;Y

n
Dj

)
≤ εn, i, j = 1, 2, i 6= j, (5)

where n is the number of channel uses and εn → 0 as n→∞.
Let Ri(P ) denote the achievable secure rate of message

Wi for a given transmission power P defined as Ri(P ) ,
log2(|Wi|)

n where |Wi| is the cardinality of the message set.
The secure degrees of freedom (SDoF) region D for the 2-
user multi-hop network is defined as the set of all achievable
pairs (d1, d2) ∈ R2

+ where,

di , lim
P→∞

Ri(P )

log2(P )
, i = 1, 2 (6)

is the degrees of freedom (DoF) for message Wi. The sum
secure DoF of the network is defined as:

SDoFsum , max
(d1,d2)∈D

d1 + d2. (7)

III. MAIN RESULTS

In this section, we first present our result on the outer bound
on the SDoF region D for the MIMO multi-hop network.
We then present two special cases of antenna configurations
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Fig. 2: The upper bound on SDoFsum normalized by NS vs NR
NS

and
ND
NS

for the 2× 2× 2 MIMO interference network. Maximum value
of the SDoFsum is attained when NS = NR = ND = N .

and show their optimality of matching the outer bounds on
the SDoF region D. The first case is when (NS , ND, NR) =
(NS , N,N) and N ≤ NS . For this case, we devise our trans-
mission scheme where we use asymptotic secure interference
alignment and neutralization technique to keep the information
symbols secured at the untrusted relays and the unintended re-
ceiver. The second case is when (NS , ND, NR) = (N,N,NR)
and N ≤ NR. For this case, we devise sub-space alignment
and neutralization technique, and show the optimality of this
scheme when NR = 4N

3 .
Theorem 1: The SDoF region D for the 2 × 2 × 2 multi-

hop interference network with NS antennas at each source
node Si, NR at each relay node Ri and ND antennas at each
destination node Di is contained within the following region:

Dout ,

{
(d1, d2) ∈ R2

+ :

d1 ≤ min(NS , ND, (2NR −ND)+) (8)

d2 ≤ min(NS , ND, (2NR −ND)+) (9)
d1 + d2 ≤ NR (10)
d1 + d2 ≤ ND + (NR −ND)+ (11)

d1 + d2 ≤ (2NS −NR)
+

}
, (12)

where (a)+ , max(0, a).
From the above outer bound, we can observe that the SDoF

region is empty (i.e., positive secure degrees of freedom are
infeasible) when either of the following conditions holds:
2NR < ND or 2NS < NR. Fig. 2 depicts the upper bound on
the SDoFsum. The converse proof of this Theorem is provided
in Section IV.

Remark 1: We take a special case when ND = NR =
N , i.e., we consider the case when the destinations and the
relays have the same number of antennas. For this special case,
the outer bound on SDoF region of Theorem 1 simplifies to
the following region(s) depending on the relative value of NS

compared to N :

d1

d2

d1

d2

N

N 2NS � N

2NS � N

(a) N  NS (b) N > NS

Fig. 3: Upper bounds for SDoF regions from Theorem 1 for the
special case (NS , ND, NR) = (NS , N,N) and two sub-cases: (a)
N ≤ NS , (b) N > NS . For case (a), Theorem 2 shows the optimality
for this bound. Characterizing the optimal SDoF region for case (b)
remains open.

• Case (a): N ≤ NS

d1 + d2 ≤ N. (13)

• Case (b): N > NS

d1 ≤ NS , (14)
d2 ≤ NS , (15)

d1 + d2 ≤ 2NS −N. (16)

Next, we show that the outer bound is optimal for Case (a).
Theorem 2: The SDoF region D for the 2 × 2 × 2

MIMO multi-hop interference network with (NS , ND, NR) =
(NS , N,N) and N ≤ NS is the set of non-negative pairs
(d1, d2) such that:

d1 + d2 ≤ N. (17)

To prove the above result, we show the achievability of the
SDoF pair (d1, d2) = (0, N) through the aligned interference
neutralization scheme in Section V. The converse follows from
Theorem 1. The resulting outer bounds for both the cases are
shown in Fig. 3. We show in Section V that the outer bound for
Case (a) is indeed optimal and can be achieved by a matching
scheme.

Theorem 3: The achievable SDoF region Din for the 2 ×
2 × 2 multi-hop interference network with (NS , ND, NR) =
(N,N,NR) and N ≤ NR is

d1 + d2 = 2min

{
N

3
, 3N − 2NR

}
. (18)

The proof of this Theorem is presented in Section VI.
Remark 2: It is worth noting that the achievable SDoF

region D coincides with the outer bound on SDoF region Dout

when either 2N
3 or 2(3N−2NR) equal 2N−NR which holds

for both cases when NR = 4N
3 .

Fig. 4 shows a comparison between DoF regions with
different antennas configurations with the case of no secrecy
[5] and with secrecy constraints. We see that the SDoF
region is diminished because of the secrecy constraints in the
network. In Fig. 4 (a), the optimal SDoF region is achieved by
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Fig. 4: Comparison between non-secure and secure DoF regions for different antenna configurations (NS , ND, NR).

secure sub-space alignment and neutralization. In Fig. 4 (b),
the inner bound on the SDoF region achieved by secure sub-
space alignment and neutralization does not match with the
outer bound for this setting. In Fig. 4 (c), the optimal SDoF
region is achieved by asymptotic interference alignment and
neutralization (Theorem 3).

IV. PROOF OF THEOREM 1

The outer bounding mechanism works as follows: we take
information cuts (i.e., a partition of nodes that separates
source(s) and respective destination(s)) across the multi-hop
network, and bound the information theoretic quantities, while
accounting for a) the secrecy and confidentiality constraints;
b) the number of antennas at all terminals; and c) the decod-
ing constraints at the destinations. Now we will prove each
constraint in the outer bound SDoF region Dout.
• Constraint (8): We first note that the bound d1 ≤
min(NS , ND) follows trivially from cut-set arguments. Hence,
we provide the proof of d1 ≤ (2NR−ND)+. We upper bound
the rate of user 1 by using Fano’s inequality as follows:

nR1 ≤ I(W1;X
n
R1
, Xn

R2
) + nεn,

≤ I(W1;X
n
R1
, Xn

R2
, Y n

D2
) + nεn,

(a)

≤ I(W1;X
n
R1
, Xn

R2
|Y n

D2
) + nεn,

≤ h(Xn
R1
, Xn

R2
|Y n

D2
) + nεn,

(b)

≤ n(2NR −ND)+ log(P ) + nεn,

where (a) follows from the confidentiality constraint for mes-
sage W1, and (b) follows from the fact that the Gaussian
distribution maximizes the entropy and the pre-log n(2NR −
ND)+ comes from the following argument: Given Y n

D2
in the

conditioning (or ND equations in 2NR variables per time slot),
the remaining degrees of freedom of the term (Xn

R1
, Xn

R2
)

can be readily upper bounded by (2NR − ND)+. Hence,
we have the proof of d1 ≤ min(NS , ND, (2NR − ND)+).
Similarly, for constraint (9), it can be shown that d2 ≤
min(NS , ND, (2NR −ND)+).
• Constraint (10): To prove this bound, we start by upper
bounding the sum rate by using Fano’s inequality as follows:

n(R1 +R2) ≤ I(W1,W2;Y
n
R1
, Y n

R2
) + nεn,

= I(W1,W2;Y
n
R1

) + I(W1,W2;Y
n
R2
|Y n

R1
) + nεn,

(a)

≤ εn + h(Y n
R2
|Y n

R1
)− h(Y n

R2
|W1,W2, Y

n
R1

) + nεn,

≤ (n+ 1)εn + h(Y n
R2

),

≤ (n+ 1)εn + nNR log(P ), (19)

where (a) follows from the secrecy constraint at the untrusted
relay 1. Dividing (19) by n and letting n→∞, we have

R1 +R2 ≤ NR log(P ). (20)

Subsequently, dividing (20) by log(P ) and letting P → ∞,
we have d1 + d2 ≤ NR.
• Constraint (11): To prove this bound, we start by bounding
the sum rate as follows:

n(R1 +R2) ≤ I(W1,W2;Y
n
D1
, Y n

R2
, Xn

R1
) + nεn,

(a)

≤ I(W1,W2;Y
n
D1
, Y n

R2
|Xn

R1
) + nεn,

= h(Y n
D1
, Y n

D2
|Xn

R1
)

− h(Y n
D1
, Y n

D2
|Xn

R1
,W1,W2) + nεn,

≤ h(Y n
D1
, Y n

D2
|Xn

R1
) + nεn,

= h(Y n
D1
|Xn

R1
) + h(Y n

D2
|Xn

R1
, Y n

D1
) + nεn,

(b)

≤ nND log(P )+n(NR −ND)+ log(P )+nεn,

where (a) follows from the secrecy constraint at untrusted relay
1, and (b) follows from the fact that the Gaussian distribution
maximizes the entropy and the pre-log ND comes from the
fact that given Xn

R1
, the number of equations in Xn

R1
at D1

is ND. For the second term, given (Xn
R1
, Y n

D1
), the remaining

degrees of freedom in Y n
D2

are upper bounded by (NR−ND)+.
Taking the limits n→∞, and P →∞, we arrive at (11).
• Constraint (12): To prove this bound, we start by bounding
the sum rate as follows:

n(R1 +R2) ≤ I(W1,W2;X
n
S1
, Xn

S2
, Y n

R1
) + nεn,

(a)

≤ I(W1,W2;X
n
S1
, Xn

S2
|Y n

R1
) + nεn,

≤ h(Xn
S1
, Xn

S2
|Y n

R1
) + nεn,

(b)

≤ n(2NS −NR)
+ log(P ) + nεn,



where (a) follows from secrecy constraint at the untrusted relay
1, and (b) follows from the fact that given Y n

R1
, the remaining

degrees of freedom in (Xn
S1
, Xn

S2
) are upper bounded by

(2NS−NR)
+. Hence, taking the limits n→∞, and P →∞,

we have the proof of (12).

V. PROOF OF THEOREM 2

In this section, we give an achievable scheme to achieve the
points P1 = (N, 0) and P2 = (0, N) in Fig. 3(a). Motivated
by the work of [4], we introduce our transmission scheme.
In particular, it is sufficient to show the achievability of point
P2, i.e. (d1, d2) = (0, N) is achievable. The other point P1 is
achievable by the reversing the roles of the transmitters. Any
point between P1 and P2 is then achievable via time sharing.
We show that for the point P2, the pair (d1, d2) = (0, NL−1

L )
is achievable where L is the number of symbol extensions of
the channel. Hence by taking L→∞, we achieve (d1, d2) =
(0, N). Our scheme is divided into two parts: Over the first
hop, we devise a secure interference alignment scheme, in
which we align the transmitted signals along with artificial
noises at the relays such that the relays can not infer any of
these information signals. Over the second hop of the network,
we perform secure interference neutralization, in which the
relays carefully transmit the signals such that the unintended
signals are cancelled out at that unintended destination.

I. Achieving (d1, d2) = (0, N) : 1

When considering L symbol extension of the network, the
effective channel coefficients for the two hops can be written
as:

F̃kj = blkdiag(Fkj(1),Fkj(2), . . . ,Fkj(L)), (21)

G̃kj = blkdiag(Gkj(1),Gkj(2), . . . ,Gkj(L)), (22)

where F̃kj and G̃kj , k, j ∈ {1, 2} are block diagonal matrices
of dimensions NL×NL.

Let the transmitted symbols of sources Si, i ∈ {1, 2} be as
follows:

s1 =
[
n1 n2 . . . nNL−1 nNL

]T
NL×1, (23)

s2 =
[
b1 b2 . . . bNL−2 bNL−1

]T
NL−1×1, (24)

where {bi}NL−1
i=1 are the information symbols sent from

S2, and {ni}NL
i=1 are the artificial noises2 sent from S1.

Source node S1 sends s1(i) along with precoding vector
v1,i ∈ CNL×1, i ∈ {1, . . . , NL}, also S1. Source node S2

sends s2(i) along with precoding vector v2,i ∈ CNL×1, i ∈
{1, . . . , NL−1}. Then, the transmitted signal from source S1

is as follows:

x1 =
[
v1,1 v1,2 . . . v1,NL

]
s1. (25)

1Each source node uses min(N,Ns) = N antennas to transmit its data
symbols. Hence, Fkj(n) ∈ CN×N ,∀n = 1, . . . , N .

2The artificial noises {ni}NL
i=1 are chosen as i.i.d. Gaussian distribution

with power P .

Similarly, source node S2 sends s2(i) along with precoding
vector v2,i ∈ CNL×1, i ∈ {1, . . . , NL − 1}. Then, the
transmitted signal from source S2 is:

x2 =
[
v2,1 v2,2 . . . v2,NL−1

]
s2. (26)

Now we design the precoding vectors at the source nodes
{S}2i=1 in the following subsection.

1) Secure Interference Alignment conditions:

F̃11v1,i+1 = F̃12v2,i, (27)

F̃21v1,i = F̃22v2,i. (28)

We align the (i + 1)th element of x1 with the ith element of
x2. As a result, the artificial noises from sources S1 will be
aligned with the information symbols sent from S2 at relay
R1 except for the first element of x1 then this element must
be an artificial noise. Similarly, for relay R2, the ith element
of x1 is aligned with the ith element of x2 except for the last
element of x1. From conditions (27) and (28), we can write
the precoding vectors v1,i and v2,i,∀i ∈ {1, . . . , NL− 1} as:

vi+1,1 =
(
F̃−111 F̃12F̃

−1
22 F̃21

)i
v1,1, (29)

v2,i =
(
F̃−122 F̃21F̃

−1
11 F̃12

)i−1
F̃−122 F̃21v1,1, (30)

where v1,1 ∈ Rn is chosen to be all one vector.
Note that as proved in [4], it can be easily verified that
{v1,i}NL

i=1

(
and{v2,i}NL−1

i=1 as well
)

are linearly independent
(see Section III. A in [4]). Now the received signal at relay
R1 will be:

yR1
= F̃11x1 + F̃12x2,

= F̃11v1,1x1,1 +

NL−1∑

i=1

F̃11v1,i+1(x1,i+1 + x2,i). (31)

Similarly, for R2, we have

yR2
= F̃21x1 + F̃22x2,

=

NL−1∑

i=1

F̃21v1,i(x1,i + x2,i) + F̃21v1,NLx1,NL. (32)

Then each relay Ri will multiply the received signal with the
inverse of the effective channel FRi

to transmit in the second
hop as follows:

xR1
= F̃−1R1

yR1
=
[
n1 b1 + n2 . . . bNL−1 + nNL

]T
,

where F̃R1
=
[
F̃11v1,1 F̃11v1,2 . . . F̃11v1,NL

]
and

xR2 = F̃−1R2
yR2 ,

=
[
b1 + n1 b2 + n2 . . . bNL−1 + nNL−1 nNL

]T
,

where F̃R2
=
[
F̃21v1,1 F̃21v1,2 . . . F̃21v1,NL

]
.

Fig. 5 shows an example for L = 6 symbol extensions and
N = 1 antenna. Source node S1 sends artificial noises {ni}6i=1

while source node S2 sends information symbols {bi}5i=1. The
resulting alignment of artificial noises at both the relays are
illustrated in the figure. Now we design the precoding vectors
at the relay nodes {R}2i=1 in the following subsection.



2) Secure Interference Neutralization Conditions:

G̃11vR1,i+1 = −G̃12vR2,i, (33)

G̃21vR1,i = −G̃22vR2,i, (34)

Now we neutralize {bi}NL−1
i=1 at destination D1, similarly

for D2, we neutralize the contributions of {ni}NL
i=1. From

conditions (33) and (34), we can write the precoding vectors
vR1,i and vR2,i,∀i ∈ {1, . . . , NL− 1} as:

vR1,i+1 = −
(
G̃−111 G̃12G̃

−1
22 G̃21

)i
vR1,1, (35)

vR2,i = −
(
G̃−122 G̃21G

−1
11 G̃12

)i−1
G̃−122 G̃21vR1,1, (36)

where vR1,1 ∈ RNL×1 is chosen to be all one vec-
tor. Note that as proved in [4], it can be shown that
{vR1,i}NL

i=1

(
{vR2,i}NL−1

i=1 as well
)

are linearly independent
(see Section III. A in [4]). The received signal at D1 is

yD1
= G̃11xR1

+ G̃12xR2
,

= G̃11vR1,1x1,1

+

NL−1∑

i=1

G̃11vR1,i+1 (x1,i+1 − x1,i) . (37)

Thus, due to secure neutralization, destination D1 only sees the
contribution due to artificial noises, and has no contribution
from the information symbols intended for destination D2.
Also, the received signal at D2 is as follows:

yD2 = G̃21xR1 + G̃22xR2
,

= G̃21vR1,NL (x1,NL + x2,NL−1)

+

NL−1∑

i=1

G̃22vR2,i (x2,i − x2,i−1) . (38)

Similarly, D2 can decode x2,1 and subtract it from the second
element to decode x2,2 and so on to decode all the messages
successively. It is worth mentioning that aligned interference
neutralization scheme satisfies the decodability and preserves
the secrecy for both destinations {Di}2i=1 [4]. Fig. 5 shows the
required neutralization conditions in order to make sure that
destination D2 decodes its information symbols while destina-
tion D1 receives only noises. The achievable SDoFsum for this
example is 5/6. To sum up, by applying the previous scheme
we can achieve almost surely d1 + d2 = NL−1

L −→
L→∞

N.

II. Secrecy constraints validation at relays:

In this subsection, we prove that the proposed scheme
preserves the secrecy constraints at relays. Let

→
B =

(b1, b2, . . . , bNL−1). Then,

I(
→
B;YR1

) = h(YR1
)− h(YR1

|
→
B), (39)

≤
L∑

i=1

h
(
YR1(i)

)
−NL log(P ), (40)

≤ NL log(P ) + o(log(P ))−NL log(P ), (41)
= o(log(P )). (42)
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n6 � n5

2n6 + b5

Interference Alignment Interference Neutralization
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S2 D2

D1R1

R2
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R2
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L � 1 = 5

Fig. 5: A proposed scheme achieves SDoFsum = L−1
L

= 5
6

with
L = 6 symbol extensions and NS = N = 1 antenna. D1 receives
only artificial noises and D2 is able to decode (b1, . . . , b5).

In the next section, we present our achievable scheme for
MIMO setting (NS , ND, NR) = (N,N,NR) and N ≤ NR.

VI. PROOF OF THEOREM 3

Each transmitter transmits signals of dimension 3NS−2NR,
where a and b are the information symbols sent from trans-
mitter 1 and 2, respectively. {ui}2i=1 and {wi}2i=1 are the
cooeprative jammer signals transmitted from transmitter 1 and
2, respectively. The transmitted signals are:

x1 = V1a+V2u1 +V3u2, (43)
x2 = V4b+V5w1 +V6w2. (44)

For the first hop, we precode these signals such that the infor-
mation symbols of one transmitter lies in the same subspace
as the cooperative jamming of the other transmitter at both
relays. Hence, we can write the received signals at relays as:

yR1 = (F11V1a+ F12V5w1) + (F11V2u1 + F12V4b)

+ F11V3u2 + F12V6w2, (45)
yR2 = (F21V1a+ F22V6w2) + (F21V3u2 + F22V4b)

+ F21V2u1 + F22V5w1. (46)

The precoding matrices are chosen such that

span{F11V1} ⊆ span{F12V5}, (47)
span{F11V2} ⊆ span{F12V4}, (48)
span{F21V1} ⊆ span{F22V6}, (49)
span{F21V3} ⊆ span{F22V4}. (50)

The solution to the previous conditions (47) and (49) can be
obtained by solving the following equations,

[
F11 −F12 0NR×NS

F21 0NR×NS
−F22

]

V1

V5

V6


 = 02NR×(3NS−2NR).

(51)



Similarly for conditions (48) and (50), the solution can be
obtained as:
[

F11 0NR×NS
−F12

0NR×NS
F21 −F22

]

V2

V3

V4


 = 02NR×(3NS−2NR).

(52)

In order to decode the received signals at the relays, the
total dimensions at each relay 4× (3NS − 2NR) should be at
most NR and hence after decoding these signals, each user’s
signal is protected at each relay. For the second hop, each
relay Ri will multiply the received signal with the inverse
of the effective channel FRi

, then each relay will have the
following signals:

xR1 = F−1R1
yR1 , (53)

=
[
a+w1 u1 + b u2 w2

]T
, (54)

where FR1
=
[
F11V1 F11V4 F11V3 F12V6

]
and for

R2 as:

xR2
= F−1R2

yR2
, (55)

=
[
a+w2 u2 + b u1 w1

]T
, (56)

where FR2
=
[
F21V1 F21V3 F21V2 F22V5

]
. For the

second hop, each relay will transmit the following:

xR1
= Ṽ1(a+w1) + Ṽ4u2 + Ṽ5w3, (57)

xR2
= Ṽ2w1 + Ṽ3(u2 + b). (58)

where w3 is an artificial noise generated at R1. For the second
hop, we precode these signals such that one receiver gets its
information symbols cleanly after neutralizing its associated
artificial noise while keeping the unintended signals for that
receiver secured by making them lie in the subspace of the
artificial noise. Hence, the received signals at destinations are
written as:

yD1
= (G11Ṽ1(a+w1) +G12Ṽ2w1)

+ (G11Ṽ5w3 +G12Ṽ3(u2 + b)) +G11Ṽ4u2, (59)

yD2
= (G22Ṽ3(u2 + b) +G21Ṽ4u2)

+ (G21Ṽ5w3 +G22Ṽ2w1) +G21Ṽ1(a+w1).
(60)

The precoding matrices are chosen such that

span{G11Ṽ1} ⊆ span{−G12Ṽ2}, (61)

span{G22Ṽ3} ⊆ span{−G21Ṽ4}, (62)

span{G21Ṽ5} ⊆ span{G22Ṽ2}, (63)

span{G11Ṽ5} ⊆ span{G12Ṽ3}. (64)

The design of the precoders can be determined as follows:

Ṽ5 → Ṽ2 → Ṽ1, Ṽ5 → Ṽ3 → Ṽ4, (65)

where Ṽ5 is chosen randomly and Ṽ2 (Ṽ3 as well) can be
obained afterwards. After obtaining Ṽ2 and Ṽ3, Ṽ1 can be
determined as function of Ṽ2, similary Ṽ4 is determined as

a function of Ṽ3. It is worth noting that these condtions have
a solution when ND ≤ NR. The achievable SDoFsum for this
scheme is

d1 + d2 = 2min

{
ND

3
, 3NS − 2NR

}
. (66)

Then after presenting the achievable scheme for a general
setting, taking the MIMO case (NS , ND, NR) = (N,N,NR)
and N ≤ NR. We will get the following the achievable
SDoFsum

d1 + d2 = 2min

{
N

3
, 3N − 2NR

}
. (67)

VII. CONCLUSION

In this paper, we studied the 2 × 2 × 2 multi-hop network
with untrusted relays and confidential messages. We first
presented an outer bound on the SDoF region for the MIMO
multi-hop network with arbitrary number of antennas. We
devised achievable scheme for the SDoF region under certain
antenna configurations based on secure interference align-
ment and secure subspace alignment along with interference
neutralization techniques. We are currently investigating the
problem in full generality of number antennas with the goal of
characterizing the secure DoF region for all remaining antenna
configurations.
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