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Abstract—Crowdsourcing is an emerging paradigm for spec-
trum access rule enforcement in dynamic spectrum sharing,
which leverages a large number of mobile users to help mon-
itoring and detecting spectrum violations and misuse. Its main
advantages compared with traditional dedicated monitoring ar-
chitecture includes enhanced coverage, effectiveness and lower
costs. However, how to optimally assign mobile users to monitor
the channel usage has not been studied in the crowdsourced
setting. The main challenges are: the large number of channels
to monitor while mobile users may not be available all the time,
the need to consider monitoring costs and incentives, as well as
the uncertainty of each channel’s traffic patterns. In this paper,
we tackle such challenges by formulating a stochastic optimiza-
tion problem that optimizes the spectrum monitoring task for
crowdsourced mobile users. We consider the availability pattern
of the mobile users and we assume they are given payments as
incentives for participating in monitoring. Simulations show that
our method outperforms the risk-averse scenario and has a small
gap with the solution under perfect information.

I. INTRODUCTION

The huge demand for high data rates, the scarcity of the

legitimate spectrum offered by the spectrum providers and the

increasing number of mobile users, made efficient spectrum

utilization an undeniable need. Recent studies [1] show that

the existing spectrum assignment policies are underutilizing

the licensed band. Hence, cognitive radio [2] is proposed

to maximize the use of the spectrum holes vacated by the

primary users (PUs). Although utilizing those vacancies can

be permitted by a main control hub or a platform for a

certain time window and certain secondary users (SUs), some

SUs could access the spectrum without authorization causing

interference to both of the PUs and the authorized SUs [3].

Therefore, monitoring the spectrum to detect those violations

is a necessary action. However, the traditional approach to

spectrum monitoring relies on a set of dedicated monitors,

which suffer from several drawbacks: (1) The large number of

channels makes it hard to cover all the channels, which affects

the monitoring coverage and detection effectiveness; (2) With

a small number of monitors, it is difficult to estimate and

predict the traffic pattern accurately, while frequent switching

among different channels incurs packet losses; (3) The cost of

deployment is high.

To solve these problems, crowdsourcing [4], [5] spectrum

monitoring approaches that leverage the power of a crowd of

mobile users have been proposed to distribute the monitoring

burden and to accumulate more accurate results. Although the

channel assignment problem may seem simpler as we have

more monitors, the optimal assignment is still challenging.

Specifically, we need to consider the constraints on the avail-

ability period of each mobile user, as well as provide incentives

to users to encourage their participation in monitoring, other-

wise, mobile users would waste their communication time and

energy. In addition, the platform needs to minimize its total

cost which includes the payment to all the monitors. Finally,

the traffic pattern on each channel is not deterministic and

may not be known ahead of time, which adds uncertainty to

the monitoring result. The size of the problem (large number

of monitors and channels) also potentially make the solution

computationally intractable.

The problem of channel assignment has been studied under

non-crowdsourcing based models. In [6], the authors propose

a greedy algorithm to maximize packet collection with the

fewest channel switches, but this algorithm is not proven to

be optimal. In [7], the authors formulate an NP- hard ILP

that maximizes the number of active slots captured and they

use the probabilistic rounding algorithm (PRA) to solve the

LP-relaxation of the ILP. Similar to [7], in [8], the authors

employ PRA and compare it with a deterministic rounding

algorithm (DRA) and they prove that DRA outperforms PRA

in achieving the best rounding ratio. In [9], using PRA as

well, the authors formulate and solve the assignment problem

given the knowledge of the transmission probability of the

monitored nodes. Although these works efficiently approx-

imate the solution of the NP-hard assignment problem by

rounding, the solutions they deliver are not optimal and does

not consider the monitors’ incentives. On the other hand, a few

crowdsourcing based mechanisms considered incentivizing the

monitors. In [10], the authors design an auction-game based

incentive mechanism, while formulating a dynamic program

that minimizes the total cost of monitoring. In [11], they con-

sider a more general model by including service requesters as

players. Although these works properly reward the monitors,

they do not consider an optimal channel assignment problem.

In this work, we propose an optimal channel assignment

framework for crowdsourcing-based spectrum monitoring. We

consider the monitors as mobile users having an availability

pattern that represents their busy and free times. We not only

dedicate monitors to channels in the frequency domain, but

also, we assign them to the channels over T time slots in

the future. Due to the monitors’ activity patterns, they are not



available all the time to monitor. This forces us to assign them

channels to monitor in their free times only. We deal with the

traffic pattern in two ways. First, we assume a deterministic

traffic pattern (DTP), where the number of packets arriving

in a certain time on a specific channel is known. Second,

we assume a stochastic traffic pattern (STP) where the traffic

pattern is a random variable (RV) with known distribution.

We assume that the platform gives incentive to each monitor

depending on the fixed sensing cost and the number of data

packets it monitored. We formulate the above two problems

as ILP and stochastic programming problems, respectively.

To the best of our knowledge, our work is the first to con-

sider the monitors’ activity pattern assumption. Furthermore,

this is the first work to apply stochastic programming (SP) on

random traffic patterns to maximize the amount of collected

information. Our contribution can be summarized as follows:

1) For DTP, we formulate the optimal channel assignment

as an ILP and we show that its integer optimal solution

can be found in cubic time, by proving that its con-

straints’ coefficient matrix is always totally unimodular.

2) For STP, we formulate an SP that breaks the randomness

of the traffic into many cases each one of them has a

fixed pattern and then we obtain an optimal closed form

solution for each of sub-cases.

3) We show by simulation the effect of changing the system

parameters on the quality of packet monitoring. Further-

more, we show that our stochastic program outperforms

the risk- averse traffic scenario and has a small gap with

the perfect information scenario.

The rest of this paper is organized as follows. In Section II,

we describe the system model. The problem formulation and

solution is depicted in Section III. Section IV presents the

simulation results. Finally, Section V concludes the paper.

II. SYSTEM MODEL

Assume that we have a set of legitimate primary users (PUs)

having a certain activity pattern over a set of N independent

and identically distributed (i.i.d) lossless channels forming the

set C = {1, 2..n..N}. We also have a set of M mobile users

(MUs) U = {1, 2..k..M} communicate over those channels.

Some of the MUs tend to violate the rules by communicating

without a permit or transmitting with a high power which

interferes with the PUs. The violators set is Uv = {1, 2...Mv}
and Mv < M . To detect the violations, as described in Fig.

1, a set Md of trustworthy monitors Ud = {1, 2..j..Md} try

to monitor the occupied channels and detect if there are MUs

violating the spectrum or not. The monitoring happens at each

time slot t, where t ∈ {1, 2...T}.

To form good knowledge about violations, the monitors

must collect as many packets as possible, which is the main

point in this work. The monitors then report their results

to a central platform which takes actions against violators

such as banning them from accessing the spectrum in the

future. Packets aggregation and interpretation, punishments

and any platform or PUs’ end protocols are out of our scope.

As mentioned before, we assume that the monitors are MUs

Figure 1: Monitoring System Architecture

which dedicate part of their free time to observe the primary

channels. In order to make sure that monitoring won’t interfere

with the MUs’ communication, we construct an availability

matrix A ∈ RMdxT which indicates the MUs activity such

that ∀ajt ∈ A, ajt = 0 if the monitor is not available and

ajt = 1 if the monitor is available. We assume that the channel

condition/gain won’t affect the quality of monitoring. Also, we

assume that the monitors can deliver the monitoring results to

the platform without any loss. In other words, the result that

a monitor j finds after monitoring channel n is a true and

non-corrupted result.

As we assume that the monitors are real users which the

platform rely on, the platform must consider their loss due

to monitoring and give them a payment as a compensation.

Therefore, the platform should give incentives to the monitors

in form of payment pj , where pj is more than or equal to

the monitoring cost. As said before, the main job of the

monitor j is to collect as many packets as it can from the

channel n that j is optimally assigned for. We assume that

each channel n has a unique traffic pattern that models the

traffic communicated on it. We have two cases for the traffic

patterns. First, we assume that the traffic pattern V ∈ RNxT

that characterizes the number of packets at a certain channel

at a specific time slot, is deterministic. Second, we assume

that the traffic pattern
∼
V ∈ RNxT of the packets is an RV

and we know its distribution. This assumption is reasonable

because although traffic statistics can change over time, there

are machine learning techniques to learn and update the traffic

distribution online, for example, [7] and [6]. The commonly

used notations are summarized in TABLE I.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate and solve our problem in two

cases: the deterministic and the stochastic cases.

A. DTP Problem Formulation and Solution

The platform’s objective is to maximize the total collected

packets and minimize the payments given to the monitors by



Table I: Summary of Frequently Used Symbols

N/Md/T Number of channels/monitors/time slots
Md Number of monitors/detectors
T Number of time slots
A Availability matrix

pj/p Payment element/vector
vtn/v/V Constant traffic pattern element/vector/matrix
∼
v
t

n/
∼
v/

∼
V Stochastic traffic pattern element/vector/matrix

ztjn/z/Z Assignment decision element/vector/matrix

optimally assigning Md monitors to N channels over T time

slots ahead without affecting the monitors’ communication.

DTP problem can be formulated the as follows:

DTP : max
Z,P

T∑
t=1

N∑
n=1

Md∑
j=1

vtnz
t
jn − β

Md∑
j=1

pj

s.t. ztjn ∈ {0, 1} ∀t, ∀j, ∀n (1)

N∑
n=1

ztjn ≤ 1 ∀t, ∀j (2)

Md∑
j=1

ztjn ≤ 1 ∀t, ∀n (3)

Zn � A ∀n (4)

pj −
T∑

t=1

(

N∑
n=1

ztjn) ≥ 0 ∀j (5)

where Z ∈ RMdxNxT is a binary decision variable such that:

ztjn = 1 if channel n is monitored at time slot t by monitor

j and ztjn = 1 otherwise, β is a weighting factor used by the

platform to control the effect of the payment, and vtn is the

number of packets collected at channel n on time t. In the

objective function, we are trying to maximize the difference

between the overall number of the collected packets and the

payments given to the monitors. In (2), we make sure that each

monitor senses one channel at most. In (3), we make sure that

each channel is sensed at most once. In (4), we make sure

that the channels are only assigned to the available monitors,

where Zn is the matrix of decision elements that corresponds

to the same channel n. In (5), we make sure that the payment

given to the monitor is at least equal to its monitoring cost.

We can see that DTP is an ILP due to the existence

of a binary decision variable. A straight forward solution is

obtained by relaxing DTP to an LP and round its optimal

value, but this may affect the optimality of the solution.

However, if the following conditions are met, we can obtain

an optimal integer solution for our problem without the need

of relaxation or using exhaustive search, which is NP-Hard

and comes with exponential complexity. For any ILP on the

form

min
x

c�x

s.t. Dx ≤ b (6)

where x is an integer decision variable, c, b are vectors, D is

the matrix of the constraints’ coefficients. There is an integer

solution [12] for this problem if D is a totally unimodular

(TU) matrix [13]. Meaning that the determinant of any sub-

matrix of D can only take values ∈ {−1, 0, 1} and also any

element of D must be −1, 0 or 1, also b should be a vector of

integers. In this case, the optimal solution is integer and could

be found on the vertices of the constraints’ polyhedron using

the Simplex method. This solution reduces the complexity from

exponential time, like in the exhaustive search, to a cubic time

of order O(M3
d ), which is more efficient.

Theorem 1. DTP has an optimal integer solution.

Proof. In order to prove the theorem, we should prove that

the two TU properties are true for DTP .

1) b is an integer vector, which is true for DTP as

all the right-hand side vectors and matrices of DTP
constraints, A for example, are integers and have values

∈ {0, 1}.

2) The coefficients of the decision variables of DTP form a

matrix, this matrix must be TU. This matrix was defined

as D, but we call it the coefficients of constraints matrix

(CCM). To prove that CCM is TU, we do the following:

We partition CCM into small parts, we begin with a

small part and prove it is TU then, we add another part

and we prove the resultant matrix is TU and so on.

Our proof steps depend on the theorems and propositions

found in p540, Proposition 2.1 in [14] and p280, 43(V)

in [15] about the properties of the TU matrix. Due to the

space limitation, we omit the mathematical proof. For more

information, visit our technical report [16].

B. STP Problem Formulation

In this case, we consider that
∼
V has a finite number of

outcomes L and each outcome happens with probability ql,

where
L∑

l=1

ql = 1. In other words, we know each outcome

but we do not know which one will happen. Consequently,

choosing a realization by a random guess is a solution with

the maximum risk as it results in non-optimal assignment and

wrong payments. Therefore, to deal with a problem where a

RV exists, we should formulate our problem as a stochastic

program. Stochastic Programming (SP) [17], [18] is a frame-

work for modelling optimization problems that involve uncer-

tainty or RVs. Whereas deterministic optimization problems

are formulated with fixed parameters, real world problems

almost invariably include some stochastic parameters. SP takes

advantage of the fact that probability distributions governing

the data are known or can be estimated. In our work, we

resolve the randomness in the stochastic traffic pattern problem

(STP) by doing the following: First, we divide the problem

into two parts: a fixed part (first stage) and a stochastic part

(second stage) using the recourse formulation method [19].

We leave the first stage for now, and divide the stochastic

second stage into L realization and solve a fixed sub-problem

for each realization. Afterwards, we feed the average of second



stage sub-problems’ solutions to the first stage. And by doing

that, we eliminate the stochastic part of the problem. Then,

we solve the fixed first stage after taking in consideration all

the possible realizations. But first, let’s explain the recourse

formulation method. A typical stochastic program can be

written as follows:

min
x

c�x+Q(x)

s.t. Dx ≤ b (7)

where x is the fixed or the first stage objective variable, c�x is

the fixed part of the objective and Q(x) is the stochastic part

of the problem and it contains the stochastic objective and the

stochastic constraints. Q(x) is given by:

Q(x) = Eη(Q(x, η(ωl))) (8)

where η is a RV takes values ∈ {ω1, ω2..ωl..ωL}. Each

Q(x, η(ωl)) is a fixed problem w.r.t one outcome η(ωl) and

it’s given by solving the following optimization problem:

Q(x, η(ωl)) : min
y

fi(x, y(η(ωl)))

s.t. gi(η(ωl), y) ≤ 0 (9)

where fi(x, y(η(ωl))) is the objective function and y is

any decision variable depends on any stochastic part of the

problem. gi(η(ωl), y) is the set of all stochastic constraints.

The formulation in (7) is called recourse formulation [20]

and it’s used to solve the stochastic parts separately and then

feeds them to the first stage problem as fixed quantities. Using

the same concepts, let’s first formulate our problem in an

extensive-form representation as follows:

STPext : max
z,p

∼
v
T
z − β1T p

s.t. ztjn ∈ {0, 1} ∀t, ∀j, ∀n (10)

N∑
n=1

ztjn ≤ 1 ∀t, ∀j (11)

Md∑
j=1

ztjn ≤ 1 ∀t, ∀n (12)

Zn � A ∀n (13)

pj ≥ α

T∑
t=1

N∑
n=1

vtnz
t
jn + γ

T∑
t=1

(

N∑
n=1

ztjn) ∀j (14)

where
∼
v , z and p are the same as

∼
V , Z and P , respectively, but

in a vector form. α is a constant represents how much more

energy the monitor spends in processing than in being idle. We

adopt the value of α from IEEE 802.11 power consumption

analysis [21]. Note that we have improved the constraint (5)

into (14) to take into consideration the number of packets that

monitor j has collected while lower bounding the payment,

where γ is a factor represents the monitoring cost per channel

per time slot. The new constraint makes the problem not TU,

but we will see later that using the recourse formulation will

solve this problem as this constraint is related to the stochastic

and has no effect on the problem after solving the fixed sub-

problems in the second stage.
∼
v can take any value vl with

probability ql for all l ∈ {1, 2...L}. This problem can be

transformed to the recourse formulation as follows:

STPRec : max
z

Q(z)

s.t. ztjn ∈ {0, 1} ∀t, ∀j, ∀n (15)

N∑
n=1

ztjn ≤ 1 ∀t ∀j (16)

Md∑
j=1

ztjn ≤ 1 ∀t, ∀n (17)

Zn � A ∀n (18)

Note that STPRec does not have a fixed part in its objective

as in (7), as the objective depends on z, p and they are related

to the stochastic traffic pattern, but this does not mean we

cannot separate the problem into two parts. So that, our first

stage fixed problem can be considered as a feasibility problem

in which we choose the values of z that are in the feasible

region. As in (8), Q(z) is given by:

Q(z) = E∼
v
(Q(z, vl)) (19)

and Q(z, vl) is obtained by solving the following problem:

Q(z, vl) = min
p

cT p− vTl z

s.t. Dp ≤ b (20)

where c = β1, D = −I ∈ RMdxMd and b ∈ RMd is a vector

where each element bj =
T∑

t=1
(

N∑
n=1

(αvtn + γ)ztjn) ∀j.

The fixed second stage sub-problem for realization l Q(z, vl)
has an optimal closed form solution p∗ = D−1b if D is a

square matrix and Dc � 0 [12]. For our sub-problem, the

two conditions are met because D = −I which is absolutely

a square matrix and Dc = −β1T which is always negative.

Therefore, generally, Q(z, vl) is given as follows

Q(z, vl) = β1TD−1b− vTl z

= ((α− 1)vTl + γ1T )z (21)

Hence, Q(z) is given by

Q(z) = ((α− 1)v̂T + γ1T )z (22)

where v̂ is the expectation of the L realizations. Finally, the

STP becomes:

STP : max
z

((1− α)v̂T − γ1T )z

s.t. ztjn ∈ {0, 1} ∀t, ∀j, ∀n (23)

N∑
n=1

ztjn ≤ 1 ∀t ∀j (24)

Md∑
j=1

ztjn ≤ 1 ∀t, ∀n (25)

Zn � A ∀n (26)



Table II: Simulation Parameters

T 5 γ, β 1 α 0.2
Slot time 10 ms packet time 1 ms L 1000
Iterations 1000 λ 5 Ap 70%

which is a simple LP with a TU constraint matrix as well, but

we won’t proof that the matrix of Constraints’ coefficients of

STP is TU because it is the same as the DTP, but with one

constraint less, which would not change the TU property.

The time complexity of the STP scheme is on the of order

of O(2λ) (exponential time) as we solve a sub-problem for

all the possible realizations. Note that the time complexity of

each sub-problem is cubic of order O(M3
d ), but the overall

solution is dominated by the exponential time .

IV. NUMERICAL RESULTS

In this section, we conduct extensive simulations to study

the behavior of our schemes: DTP and STP . First, we study

the behavior of DTP using data obtained from real appli-

cations. Second, for STP , we study the effect of changing

synthetic data on monitor selection. Then, we compare STP
with two existing schemes.

In the simulation setting, we generate the availability matrix

A using a normal RV with probability pr of having ones more

than zeros. In other words, we say that we have availability

probability Apr = 70%, when we have a probability of having

monitors = 0.7. We construct the realizations set from the

highest probability realizations belong to the set of all possible

realizations, because we can’t simulate all the realizations as

their number goes to ∞. The lth realization probability ql is

calculated by ql =
NT∏
i=1

ρi, where ρi is the probability of having

exactly b packets under Poisson distribution. The rest of the

parameters are given in TABLE II.

The procedure of the simulations for STP works as follows:

First, we generate the traffic pattern on each channel in each

time slot from a Poisson distribution with mean λ = 5 and we

generate the the availability as mentioned above. Second, we

select the L realizations having the highest probability. Third,

we feed this information to the problem, which we write in the

form of ”intlinprog” program in MATLAB. Forth, we solve

the monitor-to-channel problem and use that to calculate the

overall number of collected packets (Pck). Finally, we change

the system parameters like Md, N, β...etc to measure their

effect on Pck.

For DTP , we use real data traces collected from 802.11g

WLAN network, [7]. In their setting, they consider five differ-

ent types of trace data (FTP, BT, Web Browsing, Skype Voice

and Skype Video). As they did, we construct five channels

directly from the mentioned data traces, and we construct

another five from the mixes between them. Therefore, we have

up to ten channels to monitor. Fig. 2 uses this data to draw

Pck against Md. We can see that the Pck as Md increase

until Md becomes bigger enough to collect all the packets,

where the curve saturates.

In Fig. 3, we plot Pck of STP versus Md for different

values of N . We can see that the more the number of channels

the more the collected packets. Also, we can see that the

number of collected packets saturates after certain Md as

happens in DTP . We can learn here that having a huge Md is

not always efficient because the more the monitors the more

the power and the payments spent. Therefore, we can achieve

the same performance with less number of monitors if they

achieve the monitoring goal. We can see almost the same

insights in Fig. 4 where the payment increases as the number

of monitored channels increases. Furthermore, a curve that

plots Pck against Apr would have been a valid curve, but due

to the space limitation, it was omitted.

In Fig. 5, we plot Pck against the weighting factor β. In

the beginning, as β increases the problem solution remains

the same, until a point where β starts to make the platform

favors minimizing the payment over maximizing the packet

collecting. At this point, Pck starts to fall.

In Fig. 6, we draw the number of collected packets against

N . Generally, we can see that as the number of channels

increases, the number of collected packets increases. However,

the curve is divided into two trends. A fast trend, which

happens when M is relatively bigger than N . In this case,

the monitors collect as many packets as possible as their

availability is enough and a slow trend when N begins to

grow relative to M , and the monitors becomes insufficient to

sense all the channels which slows collecting packets.

In Fig. 7, we compare STP with two other schemes from

stochastic programming paradigm. First, the worst-case sce-

nario scheme where the monitors are assigned to the channels

with the lowest number of packets. This scheme is Risk-

averse, meaning that it favors being more conservative than

to risk by taking any arbitrary traffic pattern. Second, the

perfect information scenario, where scenario that will happen

is assumed to be known for sure and we solve STP for this

scenario, then we take the weighted average of all scenarios.

Our scheme proves to be better than the worst-case scenario

which means that STP achieves more wealth for the same

amount of risk. On the other hand, STP is outperformed

by the perfect scheme as it assumes the complete knowledge

of the traffic pattern. The gap between the former scheme

and STP is called the expected value of perfect information

(EVPI). EVPI is the price that one would be willing to pay in

order to gain access to perfect information, which is low in

our problem.

V. CONCLUSION

Crowdsourcing is a powerful tool that enables the platform

to hire a huge number of service providers, such as mobile

users, to complete certain tasks that the platform defines

which saves the resources of the platform and provides more

accurate information. In this paper, we adopt the crowdsourc-

ing notion to maximize the collected information from the

channels which we suspect that violations exist upon them.

We optimally assign the monitors to channels in T time slots

ahead where we consider two cases. First, the deterministic

case, where the traffic pattern is known. Second, the stochastic
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Figure 6: Pck vs. N for different Md
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case, where the traffic pattern is a RV with known distribution.

The simulations show that our scheme outperforms the Risk-

averse scenario. Furthermore, we have shown that EVPI is

small in our case which strengthens our model. For the future

work, we intend to construct an approximation algorithm to

decrease the complexity of STP , add the switching cost as a

parameter in the setting and perform traffic pattern estimation

instead of assuming the knowledge of the traffic distribution.
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