
1

Privacy-Preserving Distributed Profile Matching in
Proximity-based Mobile Social Networks

Ming Li, Member, IEEE, Shucheng Yu, Member, IEEE, Ning Cao, Student Member, IEEE, and Wenjing
Lou, Senior Member, IEEE

Abstract—Making new connections according to personal pref-
erences is a crucial service in mobile social networking, where an
initiating user can find matching users within physical proximity
of him/her. In existing systems for such services, usually all
the users directly publish their complete profiles for others
to search. However, in many applications, the users’ personal
profiles may contain sensitive information that they do not want
to make public. In this paper, we propose FindU, a set of
privacy-preserving profile matching schemes for proximity-based
mobile social networks. In FindU, an initiating user can find
from a group of users the one whose profile best matches with
his/her; to limit the risk of privacy exposure, only necessary
and minimal information about the private attributes of the
participating users is exchanged. Two increasing levels of user
privacy are defined, with decreasing amounts of revealed profile
information. Leveraging secure multi-party computation (SMC)
techniques, we propose novel protocols that realize each of the
user privacy levels, which can also be personalized by the users.
We provide formal security proofs and performance evaluation
on our schemes, and show their advantages in both security and
efficiency over state-of-the-art schemes.

I. INTRODUCTION

With the proliferation of mobile devices, mobile social net-
works (MSNs) are becoming an inseparable part of our lives.
Leveraging networked portable devices such as smart phones
and PDAs as platforms, MSN not only enables people to use
their existing online social networks (OSNs) at anywhere and
anytime, but also introduces a myriad of mobility-oriented
applications, such as location-based services and augmented
reality. Among them, an important service is to make new
social connections/friends within physical proximity based on
the matching of personal profiles. For example, MagnetU and
E-SmallTalker [2] are MSN applications that match one with
nearby people for dating or friend-making based on common
interests. In such an application, a user only needs to input
some (query) attributes in her profile, and the system would
automatically find the persons around with similar profiles.
The scopes of these applications are very broad, since people
can input anything as they want, such as hobbies, phone
contacts and places they have been to. The latter can even
be used to find “lost connections” and “familiar strangers”.

However, such systems also raise a number of privacy con-
cerns. Let us first examine a motivating scenario. In a hospital,

The preliminary version of this paper appeared in IEEE INFOCOM 2011
[1]. Ming Li is with the Dept. of CS, Utah State University, Logan, UT 84322.
Email: ming.li@usu.edu. Shucheng Yu is with the Dept. of CS, University
of Arkansas at Little Rock, Email: sxyu1@ualr.edu. Ning Cao is with the
Dept. of ECE, Worcester Polytechnic Institute, Worcester, MA 01609, Email:
ncao@ece.wpi.edu. Wenjing Lou is with the Dept. of CS, Virginia Tech.
Email: wjlou@vt.edu.

patients may include their illness symptoms and medications
in their personal profiles in order to find similar patients,
for physical or mental support. In this scenario, an initiating
user (initiator) may want to find out the patient having the
maximum number of identical symptoms with her, while being
reluctant to disclose her sensitive illness information to the rest
of the users, and the same for the users being matched with. If
users’ private profiles are directly exchanged with each other,
it will facilitate user profiling where those information can
be easily collected by a nearby user, either in an active or
passive way; and those user information may be exploited in
unauthorized ways. For example, a salesman from a pharmacy
may submit malicious matching queries to obtain statistics on
patients’ medications for marketing purposes. To cope with
user profiling in MSNs, it is essential to disclose minimal and
necessary personal information to as few users as possible.

In fact, the ideal situation is to let the initiator and its
best matching user directly and privately find out and connect
to each other, without knowing anything about other users’
profile attributes, while the rest of the users should also learn
nothing about the two user’s matching attributes. However, it
is challenging to find out the matching users privately while
efficiently. One may think of simply turning off the cell-
phone or input very few attributes, but these would interfere
with the system usability. Recently, Yang et. al. proposed
E-SmallTalker [2], a practical system for matching people’s
interests before initiating a small-talk. However, E-SmallTalker
suffers from the dictionary attack which does not fully protect
the non-match attributes between two users. Another difficulty
of private matching under a MSN setting is the lack of a
centralized authority. Lu et. al. [3] proposed a symptom
matching scheme for mobile health social networks, assuming
the existence of a semi-online central authority.

In this paper, we overcome the above challenges and make
the following main contributions.

(1) We formulate the privacy preservation problem of profile
matching in MSN. Two levels of privacy are defined along with
their threat models, where the higher privacy level leaks less
profile information to the adversary than the lower level.

(2) We propose two fully distributed privacy-preserving
profile matching schemes, one of them being a private set-
intersection (PSI) protocol and the other is a private cardinality
of set-intersection (PCSI) protocol. However, solutions based
on existing PSI schemes are far from efficient. We leverage
secure multi-party computation (SMC) based on polynomial
secret sharing, and propose several key enhancements to
improve the computation and communication efficiency. Also,

2

users can choose personalized privacy levels when running the
same matching instance.

(3) We provide formal security proofs and extensive per-
formance evaluation for our schemes. Our two protocols are
shown to be secure under the honest-but-curious (HBC) model,
with information-theoretic security (for PSI) and standard
security (for PCSI), respectively. We also discuss possible
extensions to prevent malicious attacks. Meanwhile, they are
shown to be more efficient than previous schemes that achieve
similar security guarantees under the typical settings of MSN.

II. PROBLEM DEFINITION

A. System Model

Our system consists of N users (parties) denoted as
P1, ..., PN , each possessing a portable device. We denote the
initiating party (initiator) as P1. P1 launches the matching
process and its goal is to find one party that best “matches”
with it, from the rest of the parties P2, ..., PN which are
called candidates. Each party Pi’s profile consists of a set
of attributes Si, which can be strings up to a certain length.
P1 defines a matching query to be a subset of S1, and in the
following we use S1 to denote the query set unless specified.
Also, we denote n = |S1| and m = |Si|, i > 1, assuming each
candidate has the same set size for simplicity. Note that, we
assume that the system adopts some standard way to describe
every attribute, so that two attributes are exactly the same if
they are the same semantically.

There could be various definitions of “match”. In this
paper, we consider a popular similarity criterion, namely the
intersection set size |S1 ∩ Si| (also used in [2]). The larger
the intersection set size, the higher the similarity between
two users’ profiles. User P1 can first find out her similarity
with each other users via our protocols, and then will decide
whether to connect with a best matching user based on their
actual common attributes.

We assume devices communicate through wireless inter-
faces such as bluetooth or WIFI. For simplicity, we assume
every participating device is in the communication range with
each other. In addition, we assume that a secure communica-
tion channel has been established between each pair of users.
We will discuss practical approaches for secure setup in Sec.
IV-E.

We do not assume the existence of a trusted third party
during the protocol run; all parties carry out profile matching
in a completely distributed way. They may cooperate with each
other, i.e., when P1 runs the protocol with each Pi, a subset
of the rest of parties would help them to compute their results.
Note that, providing incentives for the users to cooperate is an
important topic, and there are some existing mechanisms [4].

B. Adversary Model

In this paper, we are mainly interested in insiders who are
legitimate participators of the matching protocol and try to
perform user profiling, i.e., obtain as much personal profile
information of other nearby users as possible. For example,
With a user’s attributes, a bad guy could correlate and identify
that user via its MAC addresses or public keys. However, we

cannot absolutely prevent user profiling, because at least the
initiator and its best matching user will mutually learn their
intersection set. Thus we focus on minimizing the amount of
private information revealed in one protocol run.

The main adversary model considered in this paper is
honest-but-curious (HBC), i.e., a participant will infer private
information from protocol run but honestly follow the pro-
tocol. Although we do not specifically address the malicious
attacker model [5] where an adversary may arbitrarily deviate
from the protocol run, we will discuss how our protocols can
be extended to achieve security in that model. The adversary
may act alone or several parties may collude. We assume that
the size of a coalition is smaller than a threshold t, where t
is a parameter. And we assume N ≥ 2t+1 (honest majority)
in this paper.

C. Design Goals

1) Security Goals: Since the users may have different
privacy requirements and it takes different amount of efforts
to achieve them, we hereby (informally) define two levels of
privacy where the higher level leaks less information to the
adversaries. Aformal definition will be given in Sec. V.

Definition 1 (Privacy level 1 (PL-1)): When the protocol
ends, P1 and each candidate Pi, 2 ≤ i ≤ N mutually learn the
intersection set between them: I1,i = S1∩Si. An adversary A
(whose capability is defined in Sec. II-B) should learn nothing
beyond what can be derived from the above outputs and its
private inputs.

If we assume the adversary has unbounded computing
power, PL-1 actually corresponds to unconditional security
for all the parties under the HBC model. In PL-1, P1 can
obtain all candidates’ intersection sets within one protocol run,
which may still reveal much user information to the attacker.
Therefore we define privacy level 2 in the following.

Definition 2 (Privacy level 2 (PL-2)): When the protocol
ends, P1 and each candidate Pi, 2 ≤ i ≤ N mutually learn the
size of their intersection set: m1,i = |S1 ∩ Si|. The adversary
A should learn nothing beyond what can be derived from the
above outputs and its private inputs.

In PL-2, except when m1,i = |S1| or |Si|, P1 and each Pi

both will not learn exactly which attributes are in I1,i. The
adversary needs to run the protocol multiple times to obtain
the same amount of information with what he can obtain under
PL-1 when he assumes the role of P1.

2) Usability and Efficiency: For profile matching in MSN,
it is desirable to involve as few human interactions as possible.
In this paper, a human user only needs to explicitly participate
in the end of the protocol run, e.g., decide whom to connect
to based on the common interests. In addition, the system
design should be lightweight and practical, i.e., being enough
efficient in computation and communication to be used in
MSN. Finally, different users (especially the candidates) shall
have the option to flexibly personalize their privacy levels.

D. Design Challenges and Related Works

It is very challenging to achieve all the design goals
simultaneously, especially if we desire high level of security

3

but are unwilling to pay the cost of high computation and
communication overhead. Similar problems to ours can be
found in the literature, namely two-party private set inter-
section (PSI) [5]–[7], private cardinality of set intersection
(PCSI) [5], [6], [8]. Our privacy goals can be achieved if given
multiple instances of PSI and PCSI, respectively. They are
usually tackled with Secure Multi-party Computation (SMC).
The general SMC techniques [9] heavily rely on cryptography,
and are well-known for their inefficiency. Researchers have
proposed various customized solutions for those problems;
for example, based on oblivious polynomial evaluation [5],
[6], [8], [10], [11] and oblivious pseudo-random functions
[7], [12], [13] that are secure in the HBC model. But when
applied to the problem presented here, they incur either high
computation or communication cost, thus are impractical to
be used in MSN.

Concurrently with our work, a secure friend discovery
protocol has been proposed in [14]. Different from us, their
matching is based on computing the similarity (dot product)
between two users’ coordinates (which is not as intuitive as
the intersection of the profile attributes as ours). In addition, a
centralized trusted authority is needed to provide the coordi-
nates. In [15], a private contact discovery protocol is proposed,
where contact list manipulation is prevented by distributed
certification. However, for general sensitive profile attributes
it is difficult to find a distributed certifier in practice, whereas
our protocols are not limited in the type of attributes to share
with. In [16], privacy-preserving multi-party interest sharing
protocols for smartphone applications are proposed. However,
their protocols rely on an online semi-trusted server, which
may not be available when the users do not have connections
to it (e.g., poor signals).

In this paper, we propose two fully-distributed privacy-
preserving profile matching protocols, without relying on a
client-server relationship nor any central server. We propose
novel methods to reduce energy consumption and protocol run
time, while achieving reasonable security levels. Specifically,
we exploit the homomorphic properties of Shamir secret shar-
ing to compute the intersection between user profiles privately,
and due to the smaller computational domain of secret sharing,
our protocols achieve higher performance and lower energy
consumption for practical parameter settings of an MSN. Such
a framework is also applicable to many scenarios beyond the
motivating problems in this paper, for example, in patient
matching in online healthcare social networks.

III. TECHNICAL PRELIMINARIES

Notations. We give the main notations in the following. Note
that, unless specified, we denote [s]i as Pi’s (t, 2t+1)-share of
secret s under Shamir secret sharing (SS) scheme, and when
we mention Pi, we refer to 2 ≤ i ≤ N .

Preliminaries. Shamir secret sharing scheme (SS). A
(t, w)-SS scheme [17] shares secret s among w parties by
giving each party Pi the value [s]t,wi , and if any at most t
parties collude they cannot gain any information about s.

Secure multiparty computation (SMC) based on SS. For
addition, SS is homomorphic: let α and β be two secrets

TABLE I: Main Notations

N , t : Number of parties, maximum number of colluders
[s]t,wi : Party Pi’s secret share of s (under (t, w)-SS)
S1, Si: P1’s query attribute set, and Pi’s profile attribute set
xj , 1 ≤ j ≤ n: P1’s query set elements, n = |S1|
yij , 1 ≤ j ≤ m: Pi’s profile set elements, m = |Si|, i ∈ {2, · · · , N}
I1,i: Intersection set between P1 and Pi; m1,i = |I1,i|
Fp: The finite field used; � = logp: security parameter
H(): A cryptographic hash function
R←−, ||: Random sampling from a set, concatenation
P , P1, Pi: The set of all parties, the initiator and the ith party
Pi, P ′

i : The computing set and reconstruction set for Pi

shared using (t, w)-SS, we have [α+ β]t,wi = [α]t,wi + [β]t,wi ,
denoted as SS-Add. However, for secure multiplication, one
round of communication is needed and it is required that
w ≥ 2t + 1 [18]. Gennaro et. al. proposed the following
efficient secure multiplication protocol [19]. Let the inputs
of party Pi be [α]t,wi and [β]t,wi ; the idea is to first locally
multiply these shares, which lie on a 2t-degree polynomial (but
not random). Thus their protocol realizes randomization and
degree-reduction in one round by letting each Pi pick a random
t-degree polynomial and re-share [α]t,wi [β]t,wi to others:

Round 1. Each party Pi shares the value [α]t,wi [β]t,wi by
choosing a t-degree random polynomial hi(x), s. t. hi(0) =
[α]t,wi [β]t,wi . He sends the value hi(j) to party Pj , 1 ≤ j ≤ w.

Round 2: Every party Pj computes his share of αβ,
i.e., the value H(j) = [αβ]t,wj under a t-degree random
polynomial H , by locally computing the linear combination
H(j) =

∑w
i=1 λihi(j), where λ1, ..., λw are known constants

(Lagrangian coefficients).
This protocol incurs O(w2

�) communication cost in total,
and O(w�) for each party. We denote the above protocol as
SS-Mul.

Additive homomorphic encryption. An additive homo-
morphic encryption scheme E allows one to compute E(m1+
m2) given E(m1) and E(m2), without knowing the underly-
ing plain texts. This is only used in our protocol for PL-2.

IV. MAIN DESIGN OF FINDU

In this section, we first outline the idea of FindU, and then
present two core designs for the PSI and PCSI protocols.
Finally we address practical issues including user discovery.

A. Overview

We present two protocols that aim at realizing one level
of privacy requirement each. We start with the basic scheme
realizing PSI under PL-1, which is based on secure polynomial
evaluation using secret sharing. At a high level, for P1 and
each Pi (2 ≤ i ≤ N), their inputs are shared among a subset
Pi of 2t + 1 parties (the computing set) using (t, 2t + 1)-
SS, based on which they cooperatively compute shares of the
function Fi(xj) = Rij · fi(xj) + xj for each 1 ≤ j ≤ n,
where fi(y) is the polynomial representing Pi’s set, and Rij

is a random number jointly generated by P1 and Pi but not
known to any party. We have xj ∈ I1,i iff. Fi(xj) = xj .
The values of {Fi(xj)}1≤j≤n remain in secret-shared forms
between P1 and Pi before their shares are revealed to each

4

other. To reduce the communication complexity, we propose
an enhancement that aggregates multiple multiplication and
addition operations into one round during the secure polyno-
mial evaluation computation.

For PL-2, the advanced scheme achieves efficient PCSI. The
main idea is that, the parties in Pi first compute the (t, 2t+1)-
shares of the function Fi(xj) = Rij · fi(xj), 1 ≤ j ≤ n
securely using the basic scheme, whereas xj ∈ I1,i iff. Rij ·
fi(xj) = 0. In order to blind from P1 the correspondence
between its inputs {xj} (j ∈ {1, · · · , n}) and the outputs
Fi(xj′) (j′ ∈ {1, · · · , n}), we employ a blind-and-permute
(BP) method. To reduce the number of invocations of the BP
protocol, we use share conversion to convert the (t, t + 1)-
shares of {Fi(xj)}1≤j≤n (held by parties in the reconstruction
set P ′

i) into (1, 2)-shares shared between P1 and Pi, so that
only one BP invocation is needed between P1 and each Pi.

B. The Basic Scheme

We first give two definitions that capture the idea to involve
the minimum number of parties during computation.

Definition 3 (Computing set of Pi): A set of 2t+1 parties
Pi ⊂ P , who help P1 and Pi to compute the shares of Fi(xj),
1 ≤ j ≤ n. Pi includes P1 and Pi, and the rest 2t− 1 parties
are chosen as Pi+1, Pi+2, · · · with indices wrapping around.

Definition 4 (Reconstruction set of Pi): A set of t+1 par-
ties P ′

i ⊂ Pi, who will contribute the shares of Fi(xj),
1 ≤ j ≤ n to P1 and Pi for reconstruction, P ′

i also includes
P1 and Pi, and the rest t − 1 parties are chosen in the same
way as in the computing set.

As input, each party has a set of attributes: P1 has
S1 = {x1, x2, ..., xn} and Pi has Si = {yi1, yi2, ..., yim},
respectively, where each element is an encoded attribute in
Fp. For example, a hash algorithm can be used for encoding.
Rather than publishing the sets as they are, each Pi first
generates an m-degree polynomial based on Si as follows:

fi(y) = (y − yi1) · (y − yi2) · · · (y − yim) =

m∑
k=0

aiky
k, (1)

where {aik}0≤k≤m−1 are coefficients. We require aim ≡ 1 so
that Pi cannot give an all-zero polynomial. The function to be
computed is: Fi(xj) = Rij · fi(xj) + xj for each 1 ≤ j ≤ n,
where Rij = rijr

′
ij , rij and r′ij are random numbers generated

by P1 and Pi, respectively. In this way, if Fi(xj) ∈ Si, xj ∈
I1,i with high probability, and if Fi(xj) /∈ S1 then xj /∈ I1,i.

The basic scheme consists of three phases, and Fig. 1
describes one run between two parties - P1 and Pi. The
whole protocol between P1 and P2, ..., PN consists of N − 1
instances of the two-party protocol, which can be paral-
lelized/aggregated to save time (details are shown in [1]). In
the data share distribution phase, P1 shares the 1 to m powers
of each of its set elements, while Pi shares its private inputs
among Pi’s computing set. In addition, P1 and Pi also share
their n random numbers, respectively.

In the computation phase, the parties in Pi participate
in secure computation of the shares of {Fi(xj)}1≤j≤n. In
particular, to evaluate fi(xj), a straightforward way is to

compute m − 1 multiplications of aikx
k
j , 1 ≤ k ≤ m − 1 by

invoking the SS-multiplication protocol m−1 times. However,
this will introduce too much communication cost.

Therefore, we propose to aggregate those multiplications
into one round. That is, each party Pl ∈ Pi first locally
compute a product-sum of shares zijl =

∑m−1
k=1 [aik]l[x

k
j]l

based on m− 1 pairs of local shares {[aik]l, [xk
j]l}1≤k≤m−1.

Then, after computing zijl, each party Pl ∈ Pi proceeds in
the same way as in SS-Mul. Specifically, each Pl shares the
value zijl to others by choosing a t-degree random polynomial
hl(x), and then locally computes the same linear combination
(
∑2t+1

k=1 λkhk(l)) of the received secondary shares to get its
own share of the product-sum - [

∑m−1
k=1 aikx

k
j]l. We denote

this variant of SS-Mul as SS-Mul-Add, whose correctness
follows from the homomorphic properties of SS-Add and SS-
Mul. Since Fi(xj) = rijr

′
ij(ai0 +

∑m−1
k=1 aikx

k
j + xm

j) + xj ,
Pl’s share of Fi(xj) can then be easily computed by invoking
two more SS-Mul.

In the reconstruction phase, at least t+ 1 shares of Fi(xj)
are needed to reconstruct Fi(xj). To this end, the parties reveal
their shares to P1 and Pi, who can obtain Fi(xj) by polynomi-
al interpolation. P1 and Pi can test if Fi(xj) = xj , 1 ≤ j ≤ n
and Fi(xj) = yj , 1 ≤ j ≤ m respectively, to determine their
intersection set.

C. The Advanced Scheme
Observe that, in the basic scheme if we set Fi(xj) =

rijr
′
ijfi(xj), then the result will be 0 if xj ∈ I1,i, other-

wise a random number. In order to obtain the number of
matching attributes (m1,i), one way is to employ the equality-
test protocol [20] based on SS. However, this method incurs
too high communication cost, since even the most efficient
(probabilistic) algorithm takes 12k invocations of the SS
multiplication protocol, where 2−k is the error probability.
When k = 10, the communicated bits for test one number
(Fi(xj)) amounts to 120N2p, and there are (N−1)n numbers
to test. Considering that in modern smart mobile devices, the
wireless transmission is more costly than computation ability,
we would like to tradeoff computation for communication
efficiency.

Thus, we adopt a blind-and-permute (BP) method to obliv-
iously permute P1’s shares of each Fi(xj), so that the linkage
between Fi(xj) and its corresponding attribute xj is broken.
A BP protocol between two parties A and B where each
data item (e.g., Fi(xj)) is additively split between them is
described in [21]. The main idea is, A encrypts each of its
shares using additive homomorphic encryption and sends to
B. B then generates a different random number rj for each
shared item, and randomizes each of A’s shares by adding
rj , while subtracting rj for its own corresponding shares.
B permutes the randomized shares using a pseudo-random
permutation (PRP), and sends back to A. All the computations
are done over the ciphertexts.

However, the BP protocol cannot be applied directly. In our
protocol, each Fi(xj) is polynomially shared among t + 1
parties in P ′

i , where at most t of them may be adversarial.
Without loss of generality, assume Pi is the party that gener-
ates the random permutation (π). Then in order to randomly

5

P1’s private inputs: S1 = {x1, ..., xn}, I1,i ← ∅; Pi’s private inputs: Si = {yi1, ..., yim}, I′1,i ← ∅. Public inputs: t, Pi,P ′
i, 2 ≤

i ≤ N . Output: I1,i for both P1 and Pi.
1. Data share distribution:

1) P1 generates {rij}1≤j≤n randomly from Fp. It shares {rij}1≤j≤n and {xj , x
2
j , ..., x

m
j }1≤j≤n among parties in Pi using

(t, 2t+ 1)-SS.
2) Pi generates {r′ij}1≤j≤n randomly from Fp, lets fi(y) =

∏m
k=1(y − yik) =

∑m
k=0 aiky

k, and shares {r′ij}1≤j≤n,
{aik}0≤k≤m−1 among parties in Pi using (t, 2t+ 1)-SS.

2. Computation: Each party Pl ∈ Pi ∈ P executes the following:
1) ∀1 ≤ j ≤ n, Pl computes the share of

∑m−1
k=1 (aikx

k
j) through one invocation of SS-Mul-Add (namely, [ai1xj + ... +

ai,m−1x
m−1
j]l ← SS-Mul-Add({[aik]l, [x

k
j]l}1≤k≤m−1)). (one communication round)

2) Pl computes [fi(xj)]l = [ai0]l + [ai1xj + ...+ ai,m−1x
m−1
j]l + [xm

j]l via two SS-Add operations (local).
3) Pl computes [Rij]l = [rijr

′
ij]l and [Fi(xj)]l = [Rijfi(xj) + xj]l, for all 1 ≤ j ≤ n, through two invocations of SS-Mul

(two communication rounds), and one SS-Add (local).
3. Reconstruction:

1) Aggregate shares: each Pl ∈ P ′
i sends its shares {[Fi(xj)]l}1≤j≤n to P1 and Pi.

2) Reconstruction: P1 reconstructs Fi(xj), 1 ≤ j ≤ n from their shares, using Lagrangian interpolation. If Fi(xj) ∈ S1,
I1,i ← I1,i

∪
Fi(xj). The similar is done for Pi.

Fig. 1: The basic scheme, run between the initiator P1 and each candidate Pi ∈ P, 2 ≤ i ≤ N .

permute the shares of all the rest parties in P ′
i , there will be

at least t invocations of the BP protocol between Pi and other
parties in P ′

i , which is too computationally expensive.
Hence, in our scheme we propose an improvement that only

requires one invocation of BP protocol. The idea is to convert
the (t, t+1)-shares of Fi(xj) among Pi ∈ P ′

i into (1, 2)-shares
shared between P1 and Pi. The conversion from (t, t+1)-share
to (1, t+1)-share is a standard procedure [22] which involves
one round of re-sharing. To transform (t, t + 1)-shares into
(1, 2)-shares, we use a trick in which all the parties in P ′

i

only re-share their (t, t+1)-shares of Fi(xj) to P1 and Pi, so
that only P1 and Pi together can reconstruct s. Thus the BP
protocol is performed only once between them. The parties P1

and Pi then reconstruction the result m1,i by exchanging their
shares. The protocol to compute m1,i is described in Fig. 2.

D. Personalizing Users’ Privacy Levels

In our design, a user can choose her privacy level by telling
other parties her choice in the beginning. For example, if
a candidate Pi chooses PL-1, she can broadcast a message
indicating “Pi selects PL-1”. Then the parties in Pi’s comput-
ing set and reconstruction sets will follow the basic scheme
to compute the desired results for Pi. However, the initiator
should always agree on the privacy level that each candidate
proposes, since P1 is at a position easier to conduct user
profiling.

E. Practical Implementation Issues

In practice, proximity-based user discovery and key estab-
lishment are two important issues for the usability of our
profile matching protocols. We envision that our FindU scheme
can be used in mobile devices equipped with short-range
wireless interfaces like WiFi or Bluetooth (most of today’s
smartphones have both interfaces), and operate in the ad-
hoc mode. We have done some prior work in practical trust
initialization in wireless networks [23]. Here we describe
possible setup processes that involve little human effort.

User discovery If using Bluetooth, the existing Service
Discovery Protocol (SDP) can be utilized to search for nearby
FindU users (range is about 10m). As shown in [2], the SDP
protocol can be used to publish/exchange information. We can
use it to initiate the protocol (including key establishment).
For WiFi, the ad-hoc mode would be sufficient for device
discovery.

Key establishment As pairwise keys should be established
between all nearby devices, a straightforward design (e.g.,
in Bluetooth each user needs to manually pair up with all
the other users) would require O(N2) complexity. In order
to reduce the complexity and minimize the need of explicit
human participation, Diffie-Hellman key exchange (DHKE)
can be used. Specifically, each device Pi chooses a random
number Xi

R← Zp and publishes only Yi = gXi using
broadcast. After receiving all the Yj’s, each Pi can calculate
the pairwise key as Pj as Y Xi

j . To achieve key authenticity,
we can adopt tamper-evident pairing (TEP) [24], in which any
modification of key exchange messages between two users by
an attacker will be detected. Although TEP was implemented
in the two-party setting, the same idea can also be applied to
broadcast (each device in the group can negotiate to fix their
messaging sequence and timing after device discovery and
before pairing). In this method, the communication and time
complexity is only O(N). Though DHKE uses two modular
exponentiation operations, this overhead can be amortized
to multiple profile matching protocol runs. As in TEP, this
approach works strictly in-band and only requires each user
to press a button once, which is less intrusive. In addition, it
is fully distributed and do not need any central server.

Indeed this approach is more favorable for WiFi devices
with richer resources; however, for Bluetooth devices it can
also be used. We note that although the SDP protocol does not
support broadcast, each phone can publish up to 10 numbers
with a maximum of 128 bytes each [2]. This would be
sufficient for DHKE with 1024- bit group size. The downside
is that unicast entails communication complexity of O(N2);
however, given that the number of users within 10m range is

6

Inputs: basically the same as those in Fig. 1. In addition, P1 sets m1,i = 0, and has a public key pk1 and private key sk1, and
pk1 is known by all others. Pi sets m′

1,i = 0. Output: intersection set size m1,i.
1. Data share distribution: the same as in Fig. 1, except that P1 first randomly permutes its set S1.
2. Computation: Basically the same as in Fig. 1, except each Pl ∈ Pi computes [Fi(xj)]l = [Rijfi(xj)]l, ∀1 ≤ j ≤ n. For each
Pl ∈ P ′

i , its shares are also denoted as [Fi(xj)]
t,t+1
l .

3. Reconstruction:
1) Share conversion: Each Pl ∈ P ′

i first computes and sends [[Fi(xj)]
t,t+1
l]1,t+1

1 , [[Fi(xj)]
t,t+1
l]1,t+1

i to P1 and Pi,
respectively. Then, P1 and Pi compute [Fi(xj)]

1,2
1 and [Fi(xj)]

1,2
i , 1 ≤ j ≤ n using Lagrangian interpolation.

2) Blind and permute P1’s shares: P1 and Pi involve in one BP-protocol where Pi generates permutation π and {r′′j }1≤j≤n,
and P1’s shares will be first randomized by {r′′j }1≤j≤n and then permuted by π.

3) Reconstruction: P1 and Pi exchange their shares of {Fi(xj′)}j′∈{1,··· ,n}. Then, they reconstruct Fi(xj′) for each j′.
Then both count the number of Fi(xj′) = 0, and set this number to m1,i.

Fig. 2: The advanced scheme, run between P1 and Pi.

usually small, it will not be a big problem.

V. SECURITY ANALYSIS

In this section, we first prove the security of each scheme
under the HBC (semi-honest) model, and then discuss exten-
sions to resist active attacks that deviate from the protocol
run.

A. Security Definition

We define the security of our schemes based on the stan-
dard definition of secure multi-party computation under the
HBC model [25] (c.f., Chapter 7), assuming private channels.
Loosely speaking, “a multi-party protocol privately computes
F , if whatever a set of semi-honest parties can obtain after
participating in the protocol could be essentially obtained from
the input and output of these very parties”. Our protocols
(denoted as Π) compute a two-ary functionality F (either
the set intersection or cardinality of intersection set) between
A (initiator) and B (a responder) with the help of at least
2t − 1 other parties (for simplicity, in our proofs we assume
that all N parties P participate in their computation). That
is, F(SA, SB) = SA

∩
SB = IA,B , and F ′

(SA, SB) =
|SA

∩
SB| = |IA,B | which are deterministic functions. Note

that, the input of A is: x⃗A = SA = {x1, ..., xn} while for
B, the input is x⃗B = SB = {y1, ..., ym}. However, parties
in P\{A,B} do not have inputs nor yield any output. Thus,
our protocol is a special case of multi-party computation. The
view of the i-th party during an execution of Π on input
S̄ = {SA, SB} is defined as: VIEWΠ

i (S̄) , (Si, r,m1, ...,ml)
if i = A or B, and VIEWΠ

i (S̄) , (r,m1, ...,ml) otherwise,
where mi represents the i-th message it has received and
r stands for the internal randomness. Now we give formal
definitions for privacy.

Definition 5 (t-privacy with respect to semi-honest behavior):
We say that Π t-privately computes deterministic function F
if there exist a P.P.T. algorithm, denoted as A, such that for
every coalition of semi-honest parties Γ = {i1, ..., it} ⊂ P
with size at most t, it holds that

{A(Γ, (x⃗i1 , ..., x⃗it), FΓ(x⃗))}x⃗∈{0,1}∗ ≡ {VIEWΠ
Γ (x⃗)}x⃗∈{0,1}∗

(2)
where x⃗ is the vector of all the inputs. In the middle
when we write “≡”, we mean perfect indistinguishability

(correspondingly to computationally unbounded adversaries);
while “

c≡” refers to computational indistinguishability (for
computationally bounded adversaries).

In what follows, our proofs are based on simulation in the
“real-world”/“ideal-world” paradigm.

B. Security Proof of the Basic Scheme Under the HBC Model

Theorem 1: The basic protocol (in Fig. 1) t-privately com-
putes the set intersection between two parties A and B (in
the semi-honest model), against computationally unbounded
adversaries.

Proof: Here we give the proof sketch. The full proof is
provided in Appendix. A.

The basic protocol Π1 computes the set intersection
(F (SA, SB) = SA

∩
SB) between two parties A and B.

It is realized by a multi-party protocol that first evaluates
the function F (xj , SB) = rjr

′
jf(xj) + xj on each of A’s

input xj , 1 ≤ j ≤ n and SB , where f(y) =
∏m

k=1(y −
yk) =

∑m
k=0 aky

k, and {rj}1≤j≤n, {r′j}1≤j≤n are random
blinding numbers chosen by A and B, respectively. Then
A outputs FA(SA, SB) = SA

∩
{F (xj , SB)}1≤j≤n, and B

outputs FB(SA, SB) = SB

∩
{F (xj , SB)}1≤j≤n.

The protocol Π1 clearly consists of three phases: 1) input
sharing; 2) share-based computation; 3) output reconstruction.
All these phases are based on Shamir secret sharing. Our proof
follows the idea in [26]. Intuitively, the protocol is t-private
because the only values that the parties see until the output
reconstruction phase are random shares. Since the threshold of
the SS scheme is t+1, no adversary controlling up to t parties
can learn anything. Due to the fact that t shares of any two
secrets are identically distributed [26], the adversary’s view
can be simulated. In the third phase, the random numbers rj
and r′j are both uniformly distributed and at least one of them
remains secret to the adversary. Thus, except to match the
inputs and final outputs of the adversary, the simulator can
generate the shares based on any arbitrary value, while the
resulting view is identical to that of a real execution.

The above intuition is formalized by constructing a sim-
ulator A for the view of an adversary that controls up to
t parties Γ, which is only given the local inputs (and the
security parameter 1κ) and local outputs of the corresponding
parties. There are three kinds of possible non-trivial situations:
1) A ∈ Γ, B /∈ Γ; 2) A /∈ Γ, B ∈ Γ; 3) {A,B} /∈ Γ, related to

7

different types of user profiling. Basically, to simulate the input
sharing phase, the simulator first generates the inputs of honest
parties randomly with the constraint of matching the corrupted
parties’ local outputs. Then it simulates the computation phase
by emulating the real protocol run using those input shares. In
both real/ideal worlds, the adversary’s views consist of their
own inputs and internal randomness, the messages received
from honest parties, and (are augmented by) the intermediate
shares they computed as the inputs/outputs to each wire of
the arithmetic circuit in each round of computation, including
the {F (xj , SB)}1≤j≤n values they obtained in the output
reconstruction phase. Then, by induction method, we show
that that the partial view (of any length) of parties in Γ in
a real execution is identically distributed to the partial view
(of the same length) output by the simulator, and also the full
views up to the output reconstruction phase. Note that for an
adversary that does not control neither A nor B, i.e., case 3),
since it does not receive any inputs/outputs, everything it sees
during either real/ideal executions is less than or equal to t
random shares. Thus the perfect indistinguishability follows
in all the cases.

Remark on security parameters. Due to unconditional secu-
rity, it is enough as long as the field Fp can represent all the
attributes in the attribute dictionary. Therefore, assume there
are 1× 106 attributes, we choose � = logp = 24.

C. Security Proof of the Advanced Scheme Under the HBC
Model

Theorem 2: Assuming a secure pseudorandom permutation
and semantically secure additive homomorphic encryption
scheme, the advanced protocol (in Fig. 2) t-privately computes
the cardinality of set intersection between two parties A and B
(in the semi-honest model), against computationally bounded
adversaries.

Proof: Proof sketch. We again construct a simulator A
that simulates the adversary Γ’s view, and we show that
the real/ideal views are computationally indistinguishable.
We still use the induction method as in the previous proof.
Essentially the input sharing and share-based computation
phases remain the same as in the basic protocol, so we only
need to focus on the output reconstruction phase. In the share
conversion round, the adversary’s appended real/ideal views
consist of only one share of values that are chosen from a
random 1-degree polynomial, which are in fact identically
distributed conditioned on real/simulated partial views of the
previous rounds. In the following, the real executions are
only seen by A and B. In the blind-and-permute round, if
A ∈ Γ, B /∈ Γ, A’s received randomized and permuted
shares are also uniformly distributed and independent from
the previous partial views. If B ∈ Γ, A /∈ Γ, due to the
semantic security of the additive homomorphic encryption
scheme, distributions of the received encrypted messages by
B are computationally indistinguishable. Finally, the partial
views of Γ in the reconstruction phase are computationally
indistinguishable in both cases (given the previous partial
views), because the the distributions of the reconstructed
values {F ′(xj , SB) = rjr

′
jf(xj)}1≤j≤n (including |IA,B |

zeros and n− |IA,B | uniformly distributed random numbers)
are indistinguishable due to the security of the pseudorandom
permutations. The full proof can be found in Appendix. B.

D. Discussion: Preventing Malicious Attacks

Our protocols in this paper are only proven secure in the
HBC model; it would be interesting to make it secure under the
stronger malicious model, i.e., to prevent an adversary from
arbitrarily deviating from a protocol run. In the conference
version of this paper [1], we showed that with an additional
commitment round before final reconstruction (which adds lit-
tle additional overhead), a specific type of “set inflation attack”
can be easily prevented where a malicious user influences the
final output in her favorable way by changing her shares after
seeing others’.

Further, we observe it is possible that our protocols can be
extended to the malicious model with some additional cost1,
following the same method in [26]. The idea is to use verifiable
secret sharing (VSS) [18], [19], which is secure under the
malicious model with t < N/3 malicious parties. Asharov
and Lindell proved in [26] that (c.f. Sec. 7), with a VSS
scheme and a secure multiplication protocol Fmul that are
both secure under the malicious model, an arbitrary multi-
party function F can be computed securely in the malicious
model. In addition they proposed a construction of Fmul that
is based on VSS. They represent F using an arithmetic circuit
with three kinds of gates: addition, multiplication-by-constant,
and multiplication; secure computation of F replaces each of
those gate by its secret sharing counterpart, namely SS-Add,
SS-Mul-by-Const, SS-Mul. As long as these components are
secure, they can be composed into a secure protocol according
to the composition theorem [27].

Therefore, in our situation, as long as we design a secure
SS-based Mul-Add protocol that is secure in the malicious
model, our PSI and PCSI protocols can be extended to be
secure under the malicious model using VSS. Because the
Mul-Add aggregates multiple multiplications into one round,
we believe the same method to construct a secure Fmul still
applies. This will be left as an interesting future work.

VI. PERFORMANCE EVALUATION

In this section, we analyze the complexity of our proposed
schemes2, carry out an extensive simulation study of the
protocols’ efficiency, and compare them with several state-
of-the-art schemes in terms of security and efficiency.

A. Complexity Analysis

1) Computational cost: The computational cost is evaluated
using the number of modular multiplication and exponentia-
tion operations, while the communication cost is calculated in
terms of number of transmitted/received bits. Let � = 24, and

1Theoretically, a general SMC protocol that is secure in the semi-honest
model can be converted to one secure in the malicious model, using a
“compiler” [25], which, however, bears too much cost.

2To reflect the reality, the full matching protocols between the initiator and
N−1 other users are considered, which are aggregations of N−1 individual
protocol runs between P1 and each Pi [1].

8

TABLE II: Comparison of complexity (q = 1024, � = 24)

Party Basic scheme PSI [7] Advanced scheme PCSI [5]

Computation P1 6nNt + mnN(1 + tlogN/�) mul1 1.5nN mul2 3nN exp3 (2n + mN) exp3

Pi 2mnt + 2(m + 6nt)t2logN/� mul1 (m + n) exp2 n exp3 mlog(logn) exp3

Comm. (TX) P1 (mnN + 8nNt)� 2nNq (mnN + 8nNt)�+ 2nNq 2nq
Pi 2t(m + 6nt)� (n + m)q 2t(m + 6nt)�+ 2nq 2mq

Comm. (RX) P1 [N(m + n) + 8nNt]� (n + m)Nq N [m + (t + 3N)n]�+ 2nNq 2mNq
Pi [m(n + 2t) + 12nt2]� 2nq [m(n + 2t) + 12nt2]�+ 2nq 2nq

Comm. total All [mnN + tN(8n + 2m + 12nt)]� N(3n + m)q [mnN + tN(8n + 2m + 12nt)]�+ 4nNq 2(n + mN)q

assume one �-bit modular multiplication (denoted as mul1)
takes �

2 bit operations. Thus, to share a secret s ∈ Fp

among N parties using (t,N)-SS, it takes �NtlogN bit
operations [22], which is tN logN

�
multiplications. For 1024-bit

and 2048-bit modular multiplications (denoted as mul2, mul3)
and exponentiations (denoted as exp2, exp3), since there exist
optimization algorithms, we will use existing benchmark test
results instead. Note that we neglect modular additions, and we
make the following assumptions to simplify the calculations:
m ≫ N , q ≫ � and m,n,N, t ≫ 1. For the details of the
complexity analysis, please refer to our technical report [28].

Recall that the computing set and the reconstruction set for
each Pi, 2 ≤ l ≤ N have sizes 2t+ 1 and t+ 1, respectively.
Also, each Pi, 2 ≤ l ≤ N is in 2t parties’ computing sets
and is in t parties’ reconstruction sets. In phase 1 (data
share distribution), P1 distributes 2tn + mn numbers to N
party, which takes (4t2n + mnN)tlogN/� mul1 operations.
For Pi, 2 ≤ l ≤ N , this is 2(n + m)t2logN/� instead. In
phase 2, in each step, P1 takes (m − 1)nN , 2nNt2logN/�,
2nNt and 2nN [1 + 2t(1 + tlogN/�)] mul1 operations. For
Pi, the numbers are 2(m − 1)nt, 4nt3logN/�, 4nt2 and
4nt[1+2t(1+tlogN/�)]. In phase 3, P1 takes n(N−1)(t+1)
mul1, while Pi takes n(t + 1). Therefore, the total computa-
tional cost for P1 is about 6nNt+mnN(1+ tlogN/�) mul1,
and 2mnt+ 2(m+ 6nt)t2logN/� mul1 for Pi.

For the advanced scheme, the costs up to the computation
phase remains the same as in the basic scheme. In the
reconstruction phase, the major computation cost of each
party comes from homomorphic encryption and decryption.
A public key encryption scheme must be used; for example,
the Paillier’s cryptosystem uses 2048-bit modulus and thus re-
quires two 2048-bit exponentiations for encryption and one for
decryption. We denote the length of ciphertext as 2q, q = 1024
(in order to compare with other schemes). P1 incurs 2nN exp3

operations for encrypting nN numbers in step 3.2, and nN
for decryption. For Pi, its computation cost is dominated by
n encryptions, i.e., 2n exp3.

2) Communication cost: The communication cost is eval-
uated in terms of number of transmitted bits. For the basic
scheme, in phase 1, P1 transmits nN(2t+m)� bits, while Pi

transmits 2t(m+ n)� bits. In phase 2, P1 sends 6nNt� bits,
while Pi sends 12nt2� bits. In phase 3, the communication
costs are negligible compared with previous phases. Thus,
in total P1 transmits approximately (mnN + 8nNt)� bits,
and Pi transmits 2t(m + 6nt)�. For all parties, their sum of
communication cost is [mnN + tN(8n+ 2m+ 12nt)]�.

For reception, P1 receives [N(m+n)+8nNt]� bits in total,
while Pi receives about [m(n+ 2t) + 12nt2]� bits.

For the advanced scheme, the costs up to the computation

phase are the same as in the basic scheme. The communication
cost of P1 in the reconstruction phase is nN(3�+2q), where
2q is the ciphertext length of homomorphic encryption. For
Pi, the cost is 2nt�+ n(2�+ 2q).

The complexity results are summarized in Table II, and
we compare our basic and advanced schemes with existing
schemes: FC10 PSI [7] and FNP PCSI (under HBC model)
[5], respectively. It can be seen that, the basic scheme’s total
computation complexity is much smaller than that of FC10’s
since q ≫ �, while that of the advanced scheme’s is smaller
than FNP’s when n is relatively small w.r.t. m. Although the
total communication costs may seem large in our schemes,
they are on the same orders with the compared schemes in
terms of m, n and N . The effect of the O(t2) factor is
moderate unless t scales linearly with N , as we will see in
the simulation results.

B. Simulation Study

1) Methodology: We implement our proposed schemes and
two previous schemes, FC10 and FNP, in NS-2 [29]. We
simulate the protocols’ communications and computations by
telling the simulator the sizes and number of packets each
party should send, fill each packet with dummy contents, and
estimate the latency of each computation. Note that, in each
round/step, we exploit the opportunities to aggregate messages
sent to the same party into one packet as much as possible, so
as to reduce the number of packets sent. In addition, we only
simulate one full protocol run, as the time variance is very
small due to deterministic scheduling.

For simulation settings, we assume the use of WiFi as
the wireless interface which operates in the ad-hoc mode,
and IEEE 802.11a is used for MAC and PHY layer. Nodes
(parties) are randomly distributed in a 50m× 50m area. The
transmission range is set to 200m, such that all nodes are
within reach of each other. Two-ray-ground propagation model
is assumed, and the wireless channels are reliable.

Evaluation metrics. To evaluate the efficiency of the proto-
cols, we adopt energy consumption and total run time as two
unified metrics. Both of them factor into the effects of both
computation and communication time, and are closely relate
to the user experience; the energy consumption is also affected
by the total run time.

We estimate the computation time for primitive operations
based on the existing benchmark test results [30]. Assuming
a 400MHz CPU, the times for the primitive crypto operations
are (seconds): 1.4× 10−6 for mul1, 8× 10−5 for mul2, 0.04
for exp2, 2.4× 10−4 for mul3, and 0.25 for exp3.

Our energy consumption model is based on [31]: E =

9

0 20 40 60 80 100
0

200

400

600

800
Total run time (s), m=100, N=10, t=4

FNP
Advanced

0 20 40 60 80 100
0

5

10

n (number of query attributes)

FC10
Basic

(a) Change n.

0 50 100 150 200
0

200

400

600
Total run time (s), n=10, N=10, t=4

FNP
Advanced

0 50 100 150 200
0

2

4

6

m (number of candidate attributes)

FC10
Basic

(b) Change m.

10 20 30 40 50 60
0

500

1000

1500

2000
Total run time (s), n=10, m=100, t=4

FNP
Advanced

10 20 30 40 50 60
0

2

4

6

N (number of users)

FC10
Basic

(c) Change N , fix t = 4.

10 20 30 40 50 60
0

500

1000

1500

2000
Total run time (s), n=10, m=100, t=N/4

FNP
Advanced

10 20 30 40 50 60
0

20

40

60

N (number of users)

FC10
Basic

(d) Change N , change t = ⌊N/4⌋.

Fig. 3: Total protocol run time. (Y-axis: protocol run time (s).)

0 20 40 60 80 100
0

50

100

150
Energy consumption (J), m=100, N=10, t=4

FNP, P1
FNP, Pi
Advanced, P1
Advanced, Pi

0 20 40 60 80 100
0

2

4

6

n (number of query attributes)

 FC10, P1
FC10, Pi
Basic, P1
Basic, Pi

(a) Change n.

0 50 100 150 200
0

20

40

60

80

100
Energy consumption (J), n=10, N=10, t=4

FNP, P1
FNP, Pi
Advanced, P1
Advanced, Pi

0 50 100 150 200
0

1

2

3

m (number of candidate attributes)

FC10, P1
FC10, Pi
Basic, P1
Basic, Pi

(b) Change m.

10 20 30 40 50 60
0

100

200

300
Energy consumption (J), n=10, m=100, t=4

FNP, P1
FNP, Pi
Advanced, P1
Advanced, Pi

10 20 30 40 50 60
0

2

4

6

N (number of users)

FC10, P1
FC10, Pi
Basic, P1
Basic, Pi

(c) Change N , fix t = 4.

10 20 30 40 50 60
0

100

200

300
Energy consumption (J), n=10, m=100, t=N/4

FNP, P1
FNP, Pi
Advanced, P1
Advanced, Pi

10 20 30 40 50 60
0

5

10

15

20

N (number of users)

FC10, P1
FC10, Pi
Basic, P1
Basic, Pi

(d) Change N , change t = ⌊N/4⌋.

Fig. 4: Energy consumption for P1 and Pi. (Y-axis: energy consumption (J).)

E =

{
10−6(6.7nt + 4.8nr) + PcompTcomp + 0.3167Ttotal (J), If computations in every step take time less than 15s

10−6(6.7nt + 4.8nr) + PcompTcomp + 0.3167(Ttotal − Tshut) + 5nshut (J), Otherwise.
(3)

ntEt + nrEr
3, where nt and nr are sent and received in

bytes, Er ≈ 6.7µJ is the receiving energy per byte, and
Et ≈ 4.8µJ is transmitting energy per byte. Also, if the
connection time exceeds 15 seconds, it is more efficient to
shut down WIFI radio [32]. Thus, in simulation we employ
the following strategy to save energy: for each party, whenever
it estimates its computing time in one step to be longer than
15s, it shuts down its own WIFI radio and also indicates
others to close theirs for a known time period, and reopens
it when the computation is done. Now, the model can be
described in Eq. (2), where nshut is the # of times WIFI
radio has shut down, Tshut is the total radio shut down time,
Pcomp, Tcomp are the CPU’s power consumption and time
spent for computation, and Ttotal stands for the total protocol
run time. For a smart phone with 400MHz CPU, we choose
Pcomp ≈ 0.18w [33].

2) Simulation results: We show the simulation results in
Fig. 3 and Fig. 4; we compare the basic scheme with the FC10
scheme [7] (the RSA exponents/modulus are both 1024-bits),
and the advanced scheme with the FNP scheme [5]. We also
assume the use of Paillier’s crytosystem for FNP, with 2048
bit modulus. Note that, we use � = 24 bits for our schemes.

In Fig. 3 (a) and Fig. 4 (a), we fix the network size N =
10, maximum number of colluders t = 4, number of profile
attributes m = 100, and change number of query attributes

3We omit the initial connection establishment energy since it is common
in all schemes.

n. It can be seen that, the basic scheme takes less than 1
second when n < 100. Both the total run time and energy
consumption of it is much less than that of FC10’s in this
case and they all increase linearly with n. For the advanced
scheme, the time and energy are smaller than those of FNP’s
when n < 40. This is mainly because the computation in the
advanced scheme scales as O(nN), which is O(n + mN)
for the FNP scheme. Nevertheless, for the profile matching
application, in reality it is often the case that n is small.

On the other hand, from Fig. 3 (b) and Fig. 4 (b) in
which n is fixed to 10 but m changes from 10 to 200, it
can be see that both the basic and the advanced schemes
are more efficient than their counterparts, more importantly
our proposed schemes are hardly affected by m. The above
shows that our schemes are more practical when the number of
profile attributes is large, while the number of query attributes
is small.

Next, we change the number of parties. We first fix the
maximum number of colluders to 4. From Fig. 3 (c) and Fig. 4
(c), one can observe that the basic scheme’s costs increase
linearly with N . This is because its run time and energy costs
are both dominated by communication which is linear in N
when t is fixed, since the computations are quite fast. The
FC10 scheme is much more computationally intensive under
this case. For the advanced scheme and FNP, their costs are
both dominated by computation rather than communication,
yet the advanced scheme performs much better due to n < m.

10

TABLE III: Comparison of security, and computation/communication efficiency under typical parameters (n=10, m=100, N=10)

Schemes Basic Advanced PSI [7] PSI [34] PCSI [5] PSI [11] PCSI [11]
Adversary Model HBC HBC HBC Malicious HBC HBC HBC

Resist active attacks No∗ No∗ No Yes No No No

Computation P1 1.6 × 104 mul1 300 exp3 250 mul2 4 × 104mul2 1020 exp3 6 × 104 mul1 4.4 × 104 mul1
Pi 9.5 × 103 mul1 20 exp3 110 exp2 2.96 × 104mul2 173 exp3 4.5 × 104 mul1 3.5 × 104 mul1

Communication (KB) P1 40/13 76/39 26/141 37/127 2.6/256 280/253 528/528
Sent/Received Pi 8.2/11 11/13.6 14/2.6 14/4.1 25.6/2.6 200/203 422/422

Total comp. time (s) 0.023 80 4.42 5.57 298 0.14 0.093
Total sent bytes (KB) 114 175 166 164 259 2080 4326

Note: No∗ means can be easily extended to prevent certain malicious attacks.

Pi has almost constant energy consumption except in the basic
scheme, since in those three schemes Pi’s computation cost is
mainly affected by m, but not N .

Finally, we scale t with N (t = ⌊N/4⌋) in Fig. 3 (d)
and Fig. 4 (d). Interestingly, the advanced scheme is still
much more efficient than the FNP scheme, and it exhibits
a super-linear effect (O(t3) in overall communication) only
when N > 50 for Pi’s energy consumption. Meanwhile, the
basic scheme suffers from this effect earlier than the advanced
scheme (better than FC10 when N < 30), since it is dominated
by communication.

The above demonstrates the advantage of our proposed
schemes when n and N are both relatively small (in the
order of tens), which is usual in mobile social networks. Note
that, in all the compared protocols, it is always the case that
P1 uses more energy than Pi. Through using the energy-
saving strategy, for the advanced scheme the parties’ energy
consumption seldom exceed 100J (equivalent to purely using
WIFI for 5min), while that of the basic scheme is below 10J.

C. Further Comparison with Previous Works

We now compare our schemes with more existing
schemes, in terms of security and efficiency. The computa-
tion/communication complexities are calculated by aggregat-
ing N − 1 protocol runs between P1 and each Pi, with P1

being the initiator/client and each Pi being a responder/server.
First, the PSI scheme in [34] achieves standard security un-

der the malicious adversary model. Its computation complexity
is 400n(N−1)mul2 operations for P1 and (560n+240m)mul2
for Pi. For sent bytes, those are (3n+2)(N − 1)q for P1 and
(2n + m + 1)q for Pi. While they are linear with n, m, the
constant factors are much higher than our basic scheme under
typical MSN scenarios.

The schemes in [11] (CANS’09) represent a category with
unconditional security. Their PSI and PCSI schemes are also
based on secret sharing. For the PSI scheme, we modify it to fit
our problem setting (by adding rij and r′ij), which differs from
our basic scheme in that: (1) it does not aggregate the mul-
tiplications in the computation phase; (2) it does not prevent
set inflation attack. We denote the computation complexity of
P1 in our basic scheme as CompP1

(Basic), the number of
bits sent by P1 in our basic scheme as CommP1(Basic), while
Comm′

P1
(Basic) stands for the number of bits received by P1

in our basic scheme. The computation complexity for the PSI
scheme in [11] is CompP1

(Basic) + 2mnNt2logN/� mul1
operations for P1, and CompPi

(Basic) + 4mnt3logN/� mul1
for Pi. The bytes sent by P1 and Pi are: CommP1(Basic) +

2mnNt�, and Comm′
P1
(Basic) + 4mnt2�, respectively. For

the PCSI scheme in [11], computation complexity for P1

and Pi are: 2mnNt2logN/� mul1 and 4mnt3logN/� mul1,
respectively, while the bytes sent are (2mnNt + 240nNt)�
and (4mnt2 + 480nt2)�, respectively.

The security and efficiency comparisons are summarized in
Table III. For efficiency comparison, we set the parameters to
be typical values: n = 10, m = 100, N = 10 and t = 4,
and numerically evaluate the computation and communication
costs. Note that, we also count the offline computations since
those also consume energy. From Table III, it can be seen
that our basic scheme outperforms all the other PSI schemes,
while the advanced scheme is slower in computationally than
the PCSI scheme in [11]. However, the latter is expensive in
communication, and does not protect against active attacks.

VII. CONCLUSION

In this paper, we for the first time formalize the problem of
privacy-preserving distributed profile matching in MSNs, and
propose two concrete schemes that achieve increasing levels
of user privacy preservation. Towards designing lightweight
protocols, we utilize Shamir secret sharing as the main secure
computation technique, while we propose additional enhance-
ments to lower the proposed schemes’ communication costs.
Through extensive security analysis and simulation study, we
show that 1) our schemes are proven secure under the HBC
model, and can be easily extended to prevent certain active
attacks; 2) our schemes are much more efficient than state-of-
the-art ones in MSNs where the network size is in the order
of tens, and when the number of query attributes is smaller
than the number of profile attributes.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under grants CNS-0716306, CNS-0831628, and
CNS-0746977. The authors would like to thank Prof. William
Martin for helpful discussions at the early stage of the proto-
cols.

REFERENCES

[1] M. Li, N. Cao, S. Yu, and W. Lou, “Findu: Privacy-preserving
personal profile matching in mobile social networks,” in IEEE
INFOCOM ’11, Apr 2011, pp. 1–9.

[2] Z. Yang, B. Zhang, J. Dai, A. Champion, D. Xuan, and D. Li, “E-
smalltalker: A distributed mobile system for social networking
in physical proximity,” in IEEE ICDCS ’10, June. 2010.

11

[3] R. Lu, X. Lin, X. Liang, and X. Shen, “A secure handshake
scheme with symptoms-matching for mhealthcare social net-
work,” Mobile Networks and Applications, pp. 1–12, 2010.

[4] C. Zhang, X. Zhu, Y. Song, and Y. Fang, “C4: A new paradigm
for providing incentives in multi-hop wireless networks,” in
INFOCOM, 2011 Proceedings IEEE, april 2011, pp. 918 –926.

[5] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private
matching and set intersection,” in EUROCRYPT’04. Springer-
Verlag, 2004, pp. 1–19.

[6] Q. Ye, H. Wang, and J. Pieprzyk, “Distributed private matching
and set operations,” in ISPEC’08, 2008, pp. 347–360.

[7] E. D. Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear complexity,” in Financial Cryptography
and Data Security ’10, 2010.

[8] L. Kissner and D. Song, “Privacy-preserving set operations,” in
CRYPTO ’05, LNCS. Springer, 2005, pp. 241–257.

[9] A. C. Yao, “Protocols for secure computations,” in SFCS ’82,
1982, pp. 160–164.

[10] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung,
“Efficient robust private set intersection,” in ACNS ’09, 2009,
pp. 125–142.

[11] G. S. Narayanan, T. Aishwarya, A. Agrawal, A. Patra,
A. Choudhary, and C. P. Rangan, “Multi party distributed private
matching, set disjointness and cardinality of set intersection with
information theoretic security,” in CANS ’09. Springer - Verlag,
Dec. 2009, pp. 21–40.

[12] C. Hazay and Y. Lindell, “Efficient protocols for set intersection
and pattern matching with security against malicious and covert
adversaries,” in TCC’08, 2008, pp. 155–175.

[13] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom func-
tion with applications to adaptive ot and secure computation of
set intersection,” in TCC ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 577–594.

[14] W. Dong, V. Dave, L. Qiu, and Y. Zhang, “Secure friend
discovery in mobile social networks,” in IEEE INFOCOM ’11,
Apr 2011, pp. 1–9.

[15] E. De Cristofaro, M. Manulis, and B. Poettering, “Private
discovery of common social contacts,” in Applied Cryptography
and Network Security. Springer, 2011, pp. 147–165.

[16] E. De Cristofaro, A. Durussel, and I. Aad, “Reclaiming privacy
for smartphone applications,” in Pervasive Computing and Com-
munications (PerCom), 2011 IEEE International Conference on,
march 2011, pp. 84 –92.

[17] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[18] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness
theorems for non-cryptographic fault-tolerant distributed com-
putation.”

[19] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified vss and
fast-track multiparty computations with applications to threshold
cryptography,” in ACM PODC ’98, 1998, pp. 101–111.

[20] T. Nishide and K. Ohta, “Multiparty computation for interval,
equality, and comparison without bit-decomposition protocol,”
in PKC’07, 2007, pp. 343–360.

[21] Y. Qi and M. J. Atallah, “Efficient privacy-preserving k-nearest
neighbor search,” in IEEE ICDCS ’08, 2008, pp. 311–319.

[22] E. Kiltz, “Unconditionally secure constant round multi-party
computation for equality, comparison, bits and exponentiation,”
in TCC ’05. Springer, 2005.

[23] M. Li, S. Yu, J. D. Guttman, W. Lou, and K. Ren, “Secure
ad-hoc trust initialization and key management in wireless body
area networks,” ACM Transactions on Sensor Networks (TOSN),
2012.

[24] S. Gollakota, N. Ahmed, N. Zeldovich, and D. Katabi, “Secure
in-band wireless pairing,” in Proceedings of the 20th USENIX
conference on Security, ser. SEC’11, 2011, pp. 16–16.

[25] O. Goldreich, Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge Univ Pr, 2009.

[26] G. Asharov and Y. Lindell, “A full proof of the bgw proto-

col for perfectly-secure multiparty computation,” Advances in
CryptologyCRYPTO 2011, 2011.

[27] R. Canetti, “Security and composition of multiparty crypto-
graphic protocols,” Journal of Cryptology, vol. 13, pp. 143–202.

[28] M. Li, S. Yu, N. Cao, and W. Lou, “Privacy-preserving distribut-
ed profile matching in proximity-based mobile social networks,”
technical Report, 2012, http://digital.cs.usu.edu/∼mingli/papers/
findu techrep.pdf.

[29] “Ns2,” http://www.isi.edu/nsnam/ns.
[30] S. Bhatt, R. Sion, and B. Carbunar, “A personal mobile drm

manager for smartphones,” Computers & Security, vol. 28, no. 6,
pp. 327 – 340, 2009.

[31] A. Rahmati and L. Zhong, “Context-for-wireless: context-
sensitive energy-efficient wireless data transfer,” in MobiSys ’07,
2007, pp. 165–178.

[32] R. Balani, “Energy consumption analysis for bluetooth, wifi and
cellular networks,” in Technical report, Dec. 2007, pp. 1–6.

[33] A. Carroll and G. Heiser, “An analysis of power consumption
in a smartphone,” in Usenix technical conference, Boston, MA,
USA, Jun 2010.

[34] G. T. E. De Cristofaro, J. Kim, “Linear-complexity private set
intersection protocols secure in malicious model.” in Asiacrypt,
2010.

[35] R. Cramer, I. Damgard, and J. Nielsen, “Secure multiparty
computation,” Book draft, 2010.

APPENDIX A
DETAILED PROOF OF SECURITY OF OUR BASIC PROTOCOL

UNDER THE HBC MODEL

Theorem 3: The basic protocol (in Fig. 1) t-privately com-
putes the set intersection between two parties A and B (in
the semi-honest model), against computationally unbounded
adversaries.

Proof: The basic protocol Π1 computes the set intersec-
tion (F (SA, SB) = SA

∩
SB = FA(SA, SB) = FB(SA, SB))

between two parties A and B. It is realized by a multi-
party protocol that first evaluates the function F (xj , SB) =
rjr

′
jf(xj) + xj on each of A’s input xj , 1 ≤ j ≤ n

and SB , where f(y) =
∏m

k=1(y − yk) =
∑m

k=0 aky
k, and

{rj}1≤j≤n, {r′j}1≤j≤n are random blinding numbers chosen
by A and B, respectively. Then A outputs FA(SA, SB) =
SA

∩
{F (xj , SB)}1≤j≤n, and B outputs FB(SA, SB) =

SB

∩
{F (xj , SB)}1≤j≤n.

The protocol Π1 clearly consists of three phases: 1) input
sharing; 2) share-based computation; 3) output reconstruction.
All these phases are based on Shamir secret sharing. Our
proof follows the idea in [26], [35]. Intuitively, the protocol
is t-private because the only values that the parties see until
the output reconstruction phase are random shares. Since the
threshold of the SS scheme is t+ 1, no adversary controlling
t parties can learn anything. Due to the fact that t shares of
any two secrets are identically distributed [26], the adversary’s
view can be simulated. In the third phase, the random numbers
rj and r′j are both uniformly distributed and at least one of
them remains secret to the adversary. Thus, except to match
the inputs and final outputs of the adversary, the simulator
can generate the shares based on any arbitrary value, while
the resulting view is identical to that of a real execution.

Next we formalize our intuition by constructing a simulator
A for the view of an adversary that controls up to t parties Γ,
which is only given the local inputs (and the security parameter

12

1κ) and local outputs of the corresponding parties. There are
three kinds of possible non-trivial situations: 1) A ∈ Γ, B /∈ Γ;
2) A /∈ Γ, B ∈ Γ; 3) {A,B} /∈ Γ, related to different types of
user profiling. We focus on describing a simulator for case 1),
while other cases follow easily from it. The simulator proceeds
as follows:

• Input: The simulator receives inputs and outputs, (SA =
{x1, ..., xn}, 1κ) and IA,B , respectively, from A ∈ Γ (the
other parties’ inputs/outputs are empty).

• Simulation:
– Simulating the input sharing phase:

(1) For party A, A first computes {xj , x
2
j , ..., x

m
j }1≤j≤n

from input, and then chooses a uniformly dis-
tributed random tape, from which it generates n

random numbers {rj}1≤j≤n
R← Fp, and also

determines the degree-t polynomials {p′j,k(x) ∈
Pxk

j ,t}1≤k≤m,1≤j≤n, {p′′j (x) ∈ Prj ,t}1≤j≤n chosen
by A, where Px,t is the set of all polynomials with
degree less than or equal to t with free coefficient x.

(2) For party B, it chooses m − |IA,B | random num-
bers y′1, ..., y

′
m−|IA,B

from Fp as a set S′
B . Then

it sets S′
B = S′

B

∪
IA,B = (y′1, ..., y

′
m). It also

selects random numbers {r̃′j}1≤j≤n
R← Fp, and

sets {a′k}0≤k≤m−1 to be the coefficient of f ′(y) =∏m
k=1(y − y′k) (a′m = 1). Now it generates random

polynomials q′k(x) ∈ Pa′
k,t(0 ≤ k ≤ m − 1), and

q′′j (x) ∈ P r̃′j ,t(1 ≤ j ≤ n).
(3) The view of parties in Γ is recorded to be
{{p′j,k(i), p′′j (i), q′′j (i)}1≤k≤m,1≤j≤n, {q′k(i)}0≤k≤m−1, }Pi∈Γ

and the random tape chosen for A ∈ Γ.
– Simulating the share-based computation phase:

For every round of computation4:
(1) In the SS-Mul-Add round (in the real world

each party executes n product-sum computation
in parallel, where each can be viewed as an
arithmetic circuit of m − 1 multiplication
gates and m − 2 addition gates), let the input
shares of each Pi ∈ P on the j-th circuit
be (p′j,1(i), q

′
1(i), ..., p

′
j,m−1(i), q

′
m−1(i)). For

each Pi ∈ P , A computes product-sums
{zij =

∑m−1
k=1 p′j,k(i)q

′
k(i)}1≤j≤n, and chooses n

random polynomials {hi,j(x) ∈ Pzij ,t}1≤j≤n. The
view of Pi ∈ Γ is appended by {hl,j(i)}Pl∈P,1≤j≤n

and {Hj(i) =
∑

Pl∈P λlhl,j(i) =
(
∑

Pl∈P λlhl,j)(i)}1≤j≤n (output shares)5.
(2) In the following two SS-Add rounds,

the input shares of each Pi ∈ Γ are
{Hj(i), p

′
j,m(i), q′0(i)}1≤j≤n. For every Pi ∈ Γ, A

simply adds them together, and record their output
shares as {g̃j(i) = (Hj + p′j,m + q′0)(i)}1≤j≤n (i.e.,
the shares of {f ′(xj)}1≤j≤n), and append to view

4Note that our protocol requires every party to receive all the messages
others sent during one round in order to proceed to the next round. Since
we consider semi-honest adversaries, this can be easily implemented by a
synchronization message.

5For clarity, we also add to the view of each party the output shares it holds
after computing in each round [26].

of Pi ∈ Γ.
(3) In the following SS-Mul round, the input shares of

each Pi ∈ P are {p′′j (i), g̃j(i)}1≤j≤n. For each Pi ∈
P , A computes the products {p′′j (i)g̃j(i)}1≤j≤n,
and chooses n random polynomials {h̃′

i,j(x) ∈
Pp′′

j (i)g̃j(i),t}1≤j≤n. The view of Pi ∈ Γ is ap-
pended by {h̃′

l,j(i)}Pl∈P,1≤j≤n and {H̃ ′
j(i) =

(
∑

Pl∈P λlh̃
′
l,j)(i)}1≤j≤n. Similarly, for the oth-

er SS-Mul round, the view of Pi ∈ Γ is ap-
pended by {h̃′′

l,j(i)}Pl∈P,1≤j≤n and {H̃ ′′
j (i) =

(
∑

Pl∈P λlh̃
′′
l,j)(i)}1≤j≤n.

4) In the final SS-Add round, for each Pi ∈ Γ,
A adds the input shares to get {g̃′j(i) = (H̃ ′′

j +
p′j,1)(i)}1≤j≤n (i.e., the shares of {F (xj , S

′
B) =

rj r̃
′
jf

′(xj) + xj}1≤j≤n), and append to view of
Pi ∈ Γ.

– Simulating the output reconstruction phase: A
adds the shares {g̃′j(1), ..., g̃′j(N)}1≤j≤n to the view
of A ∈ Γ. Finally, for party A, A computes I ′A,B =
SA

∩
{g̃′j(0)}1≤j≤n. Now A outputs the views of the

corrupted parties and halts.
Next, we show by induction that the partial view (of any

length) of parties in Γ in a real execution is identically
distributed to the partial view (of the same length) output by
the simulator. We start with the base case, after the input stage
has concluded.

Claim 1: For every x⃗ ∈ Fm+n
p and every Γ ∈ P with

|Γ| ≤ t, we have

{VIEWΠ1,0
Γ (x⃗)} ≡ {A0(Γ, x⃗Γ, FΓ(x⃗))}. (4)

Proof: Note that a general version of this claim where
every party has an input has been proven in [26] as Claim
4.3. In our case, only A and B have inputs. Thus, it can be
regarded as a special case. For all Pi ∈ Γ, they receive shares
of values {a′k}1≤k≤m−1 and {r̃′j}1≤j≤n from party B /∈ Γ.
Because these shares are calculated from random polynomials
q′k(x) ∈ Pa′

k,t(1 ≤ k ≤ m − 1) and q′′j (x) ∈ P r̃′j ,t(1 ≤ j ≤
n), respectively, and Pi ∈ Γ only hold less than or equal to t
shares of each value, by Claim 3.4 in [26], we have{

{q′k(i)}1≤k≤m−1, {q′′j (i)}1≤j≤n

}
i∈Γ

≡ (5){
{Q′

k(i)}1≤k≤m−1, {Q′′
j (i)}1≤j≤n

}
i∈Γ

,

where Q′
k(x) ∈ Pak,t(1 ≤ k ≤ m − 1) and Q′′

j (x) ∈
Prj ,t(1 ≤ j ≤ n) stand for the corresponding polynomials
chosen by B in the real execution. In addition, the views of
Pi ∈ Γ for all simulated shares from their own inputs are
indistinguishable from the real execution. Thus, the real and
simulated views of the input phase are identical.

Claim 2: Let k ∈ 1, ..., L where L is the number of rounds
in Π1. If

{VIEWΠ1,k−1
Γ (x⃗)} ≡ {Ak−1(Γ, x⃗Γ, FΓ(x⃗))}, (6)

then
{VIEWΠ1,k

Γ (x⃗)} ≡ {Ak(Γ, x⃗Γ, FΓ(x⃗))}. (7)

13

Proof: Let k ∈ 1, ..., L. We separately consider the
cases that the current round is a SS-Mul-Add or SS-Add
or SS-Mul, which is a circuit for product-sum, addition,
multiplication, respectively.

If the k-th round is a addition round, then {VIEWΠ1,k
Γ (x⃗)}

is a deterministic function of {VIEWΠ1,k−1
Γ (x⃗)}, which means

the views in the k-th round are extended by the addition of
shares appearing in the previous view. Thus, if the views up to
the k − 1-th round is identically distributed, the two views in
the k-th round are obviously identically distributed. (Note that
in our case each round contains multiple same type of gates
executed in parallel; however, this is not a problem because
the joint distribution of input shares are assumed identically
distributed).

If the k-th round is a multiplication round that multiplies
shares of a and b, in the real execution the appended view is
t shares of {h′

l,j(0) = [aj]l[bj]l}Pl∈P and H ′
j(0) = aj · bj ,

where H ′
j(x) =

∑
Pl∈P λlh

′
l,j(x), and H ′

j(x) is a random
polynomial chosen from Pa·b,t because all the parties’ chosen
h′
l,j(x) are random polynomials. In the simulated execution,

the appended view is t shares of {h̃′
l,j(0) = [a′j]l[b

′
j]l}Pl∈P

and H̃ ′
j(0) = a′j · b′j , where H̃ ′

j(x) =
∑

Pl∈P λlh̃
′
l,j(x)

which is again a random polynomial. For the part of the
{h′

l,j(0)} and {h̃′
l,j(0)} shares coming from Pl /∈ Γ, t random

shares of [aj]l[bj]l are identically distributed to t random
shares of [a′j]l[b

′
j]l, given the partial views up to the k − 1th

round. To see why, denote Xk−1 and Yk−1, X∆k and Y∆k

as the partial views and added views in k-th round for real
and ideal execution, respectively. By Claim 3.4 in [26] we
have: given any two sets of secrets {al,j}Pl∈P,1≤j≤n and
{bl,j}Pl∈P,1≤j≤n (even when the secrets are known):

{
{h′

l,j(i)}Pl∈P,1≤j≤n,i∈Γ

}
≡

{
{h′

l,j(i)}Pl∈P,1≤j≤n,i∈Γ

}
,

(8)
where hl,j(x) and h′

l,j(x) are random polynomials chosen
from Pal,j ,t and Pbl,j ,t, respectively. In addition, these ran-
dom polynomials are chosen independently from the previous
partial views Xk−1 and Yk−1. This means the conditional
probability distributions Pr[Y∆k|Yk−1] and Pr[X∆k|Xk−1] are
indistinguishable. From assumption we have Xk−1 ≡ Yk−1,
thus, Xk ≡ Yk.

If the k-th round is a product-sum round that computes the
multiplication of m−1 pairs of numbers a1, b1, ..., am−1, bm−1

and then add all of them together, the similar argumen-
t can be made to the above because the only differ-
ence with single multiplication gate is, the parties first lo-
cally computes the m − 2 additions and then re-shares.
Here, {h′

l,j(0) =
∑m−1

k=1 [aj,k]l[bj,k]l}Pl∈P while {h̃′
l,j(0) =∑m−1

k=1 [a′j,k]l[b
′
j,k]l}Pl∈P . It can be easily seen the rest of the

analysis does not change from the above. This completes the
proof of the claim.

For the output reconstruction stage: the output values of par-
ty A in the real and simulated executions are: {F (xj , SB) =
rjr

′
jf(xj) + xj}1≤j≤n and {F (xj , S

′
B) = rj r̃

′
jf

′(xj) +
xj}1≤j≤n, respectively. In addition, A obtains the random
polynomials {g′j(x) ∈ PF (xj ,SB),t}1≤j≤n and {g̃′j(x) ∈

PF (xj ,S
′
B),t}1≤j≤n from all parties’ shares in the correspond-

ing views. It is easy to see that the output values are identically
distributed, because r′j and r̃′j are uniformly chosen by B and
the simulator (respectively), while the partial views of Γ after
all the previous computations are identically distributed by our
induction, which does not give the adversary any advantage
in distinguishing r′j and r̃′j . Thus, {g′j(x), F (xj , SB)}1≤j≤n

and {g̃′j(x), F (xj , S
′
B)}1≤j≤n are also identically distributed

given the partial views before the reconstruction stage, which
means the complete views are identically distributed.

For the case when A /∈ Γ, B ∈ Γ: The behavior of the
simulator for Γ is mostly symmetric to the simulator for Γ ∋
A. The only differences in this case are:
(1) The inputs to A is now (SB = {y1, ..., ym}, 1κ) and
IA,B .

(2) From the input sharing phase until the end of computation
phase, it switches the role from simulating the view of
Γ ∋ A (in case 1)) to Γ ∋ B. The partial views for these
phases are again identically distributed, as in the input
sharing phase Γ also receives less or equal to t shares,
while in the computation phase Γ’s views are symmetric
to that in case 1).

(3) In the output reconstruction phase, the output values of B
in the real and simulated executions are: {F (xj , SB) =
rjr

′
jf(xj) + xj}1≤j≤n and {F (x′

j , SB) = r̃jr
′
jf(xj) +

x′
j}1≤j≤n, respectively. For B, the numbers rj and r̃j

are identically and uniformly distributed, conditioned on
the real/simulated partial views, respectively. Thus, the
complete views are identically distributed.

Finally, for the case when (A,B) /∈ Γ, the parties in Γ do
not receive any inputs/outputs and only sees less than or equal
to t shares throughout the protocol, thus it is easy to show that
the complete views are identically distributed in this case using
induction. This completes our proof of the theorem.

APPENDIX B
DETAILED PROOF OF SECURITY OF OUR ADVANCED

PROTOCOL UNDER THE HBC MODEL

Theorem 4: Assuming a secure pseudorandom permutation
and semantically secure additive homomorphic encryption
scheme, the advanced protocol (in Fig. 2) t-privately computes
the cardinality of set intersection between two parties A and B
(in the semi-honest model), against computationally bounded
adversaries.

Proof: We describe a simulator A that simulates the ad-
versary Γ’s view. We first focus on the case for A ∈ Γ, B /∈ Γ.
The simulator proceeds as follows.

• Input: The simulator receives inputs and outputs, (SA =
{x1, ..., xn}, 1κ) and |IA,B |, respectively, from A ∈ Γ.

• Simulation:
– Simulating the input sharing phase:

(1) For party A, A does the same as in the previous
proof, except that it first randomly permutes set SA.

(2) For party B, it sets the intersection set IA,B =
(x1, ..., x|IA,B |). The remaining steps in this phase
are the same as in the previous proof.

14

– Simulating the share-based computation phase:
A proceeds in the same way as in the previous proof,
except without the final SS-Mul round. Recall that
in the final SS-Mul round, the view of Pi ∈ Γ
is appended by {h̃′′

l,j(i)}Pl∈P,1≤j≤n and {H̃ ′′
j (i) =

(
∑

Pl∈P λlh̃
′′
l,j)(i)}1≤j≤n which are the shares of

{F (xj , S
′
B) = rj r̃

′
jf

′(xj)}1≤j≤n.
– Simulating the output reconstruction phase:

(1) For the share conversion round: for each Pl ∈
P , A generates random 1-degree polynomials
{ũl,j(x) ∈ P [F (xj ,S

′
B)]l,1}1≤j≤n, and A’s view is

appended by {ũl,j(A)}Pl∈P,1≤j≤n and {Ũj(A) =
(
∑

Pl∈P γlũl,j)(A)}1≤j≤n where γl are Lagrangian
coefficients.

(2) For the blind-and-permute round: A generates a
pseudorandom permutation π̃ and uniformly cho-
sen random numbers {r̃′′j }1≤j≤n. It computes
{Ũ ′

j(A) = Ũj(A) + r̃′′j }1≤j≤n and {Ũ ′
j(B) =

Ũj(B) − γA/γB r̃
′′
j }1≤j≤n, and then permutes both

{Ũ ′
j(A)}1≤j≤n and {Ũ ′

j(B)}1≤j≤n using π̃. It adds
{Ũ ′

π̃(j)(A)}1≤j≤n to the view of Γ.
(3) Finally, A adds the shares {Ũ ′

π̃(j)(B)}1≤j≤n to the
view of Γ. A then computes {Ũ ′

j(0)}1≤j≤n, and
sets |IA,B | to be the number of zero elements in
{Ũ ′

j(0)}1≤j≤n. Now A outputs the views of the
corrupted parties and halts.

Next we show that the real/ideal views are computationally
indistinguishable. We still use the induction method as in the
previous proof. Essentially, the proof for the input sharing and
share-based computation phases remains the same. Thus the
partial views of Γ after the computation phase are identically
distributed.

For the share conversion round, in the real/simulated exe-
cutions, A’s appended view consists of only one share of each
{ul,j(A)}Pl∈P,1≤j≤n and {ũl,j(A)}Pl∈P,1≤j≤n, respectively.
Since {ul,j(x)}Pl∈P,1≤j≤n and {ũl,j(x)}Pl∈P,1≤j≤n are all
1-degree random polynomials, these shares are actually iden-
tically distributed given their previous respective partial views
(using the same line of reasoning as in Eq. (8)).

For the blind-and-permute round, in the real/simulated exe-
cutions, A’s appended view consists of {U ′

π(j)(A)}1≤j≤n and
{Ũ ′

π̃(j)(A)}1≤j≤n, respectively. Since the random numbers
r′′j and r̃′′j are all identically and uniformly distributed, the
randomized shares {U ′

j(A)}1≤j≤n, and {Ũ ′
j(A)}1≤j≤n are

uniformly distributed and independent from the previous re-
al/simulated partial views Xk−1 = {{Uj(A)}1≤j≤n, ...}, and
Yk−1 = {{Ũj(A)}1≤j≤n, ...}.

It remains to show that the full views of Γ up to the output
reconstruction stage are still computationally indistinguish-
able. In both views, the output shares received by A define
a random polynomial with {U ′

j(0) = F (xπ(j), SB)}1≤j≤n

and {Ũ ′
j(0) = F (xπ̃(j), S

′
B)}1≤j≤n as the free coeffi-

cients, respectively. Due to the security of pseudorandom
permutations, the distribution of the positions (j1, ..., j|IA,B |)
and (j′1, ..., j

′
|IA,B |) that makes {F (xjk , SB)} = 0 and

{F (xj′k
, S′

B)} = 0 are computationally indistinguishable. For

all the other positions containing random values, following the
same line of reasoning as in our previous proof, their value
distributions are also indistinguishable.

Now we discuss the case for B ∈ Γ, A /∈ Γ. The behavior of
the simulator for Γ ∋ B is mostly symmetric to the simulator
for Γ ∋ A. The only differences in this case are:
(1) The inputs to A is now (SB = {y1, ..., ym}, 1κ) and
|IA,B |.

(2) The input sharing phase: A sets S′
A by first choosing a

pesudorandom permutation π1 : {1, ..., n} → {1, ..., n},
and then sets A’s input values at |IA,B | permuted po-
sitions to be equal to |IA,B | of B’s inputs. That is, it
sets xπ1(j) = yj ,∀j ∈ [1, ..., |IA,B |]. Other elements
in S′

A are set to random numbers (not equal to SB’s
elements). The partial views from this phase throughout
the computation phase are identically distributed, which
have been discussed in proof of Theorem 1.

(3) The blind-and-permute round: B receives
{EpkA

(Uj(A))}1≤j≤n and {EpkA
(Ũj(A))}1≤j≤n,

respectively in the real/simulated views. Due
to the semantic security of the additive
homomorphic encryption scheme, distributions of
{EpkA

(Uj(A))}1≤j≤n and {EpkA
(Ũj(A))}1≤j≤n

are computationally indistinguishable to Γ, while
{Uj(A)}1≤j≤n and {Ũj(A)}1≤j≤n are independent to
anything in its corresponding previous partial views.
So the partial views up to the final output step are
computationally indistinguishable. In the output step, the
simulator also computes {Ũ ′

j(0)}1≤j≤n, and sets |IA,B |
to be the number of zero elements in {Ũ ′

j(0)}1≤j≤n.
(4) Now, we show the full views of Γ are computationally

indistinguishable. The distribution of the zero positions
(j1, ..., j|IA,B |) and (j′1, ..., j

′
|IA,B |) are indistinguishable,

even given all the previous partial views of Γ ∋ B. This is
because: (1) the two distributions are independent of B’s
own input SB as f(y) does not depend on yj’s positions;
(2) the real/simulated positions of IA,B elements in
SA and S′

A (which B can recover using π and π̃) are
both generated from pseudorandom permutations, which
are computationally indistinguishable by Γ. These are
the only information in the view that is related to the
distribution of the zero positions for B.

For the case when (A,B) /∈ Γ, the same proof for Theorem
1 applies here because they do not receive any inputs/outputs.
This completes our proof.

