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ABSTRACT
Physical layer identification allows verifying a user’s identity based
on their transmitter hardware. In contrast with digital identifiers
at higher protocol layers, physical layer identification or device
fingerprinting can identify unique signal characteristics at the phys-
ical layer introduced by manufacturing variability specific to each
device. Recently, dynamic spectrum access has been proposed to
allow a larger number of devices to efficiently access wireless spec-
trum. In such a system many low-cost devices may be distributed
over a large area with spectrum allocated and managed by a central
authority. Traditional authentication methods may not be secure,
or adequate to identify existing users in a backwards compatible
way: Identifiers such as MAC addresses can be impersonated, and
the number of devices and their distributed nature may make key
distribution and revocation difficult. Consequently, physical layer
identification can be used to augment other security measures.

We consider a crowdsourced scenario where individual users
observe a signal using their own receiver and report their measure-
ments to an enforcement authority which then identifies malicious
users. Three types of measurements that can be crowdsourced are
considered: actual signal observations, feature values, and finger-
printer output. Several methods for combining these measurements
are considered. Performance is demonstrated on data collected
from three wireless channels, used to simulate multiple receivers,
from a total of twelve transmitters. The methods are evaluated in
terms of required computational resources, bandwidth to report
measurements, and how they are affected by mismatch in receiver
characteristics. It is found that the crowdsourcing measurements
can provide an improvement over individual receivers, with the
best method dependent on the features and receivers used.
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1 INTRODUCTION
As an increasing number of devices are capable of wireless trans-
mission efficient usage of wireless spectrum is becoming ever more
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Figure 1: Diagram demonstrating a crowdsourced system.
Three receivers capture observations of a signal and pro-
vide measurements (either the sampled signal or statistics
extracted from it) to an enforcement authority to verify the
transmitter’s identity.

important. Dynamic spectrum access (DSA) networks will provide
more efficient use of wireless spectrum by allowing wireless de-
vices to cooperatively use spectrum. This includes primary users
(PUs) such as radio or television stations which have existing rights
to the spectrum, and secondary users which transmit on a non-
interference basis. This requires that the DSA network determine
when a channel is occupied, identify the user (particularly deter-
mining if it is the PU), and take action when an attack is detected.
Crowdsourcing has been proposed to help monitor spectrum in
such a system [6], including channel sensing [24, 28], and identi-
fying the location of malicious users [12]. Incentive systems have
been examined to encourage users to report measurements [15], and
determine how to allocate a limited number of sensors to efficiently
perform sensing [19].

We consider the step of identifying malicious users in such a sys-
tem, shown in Figure 1, using physical layer identification (PLI). PLI
is a type of device fingerprinting which allows identifying a device
based on characteristics and behavior unique to each device at the
physical layer. This is introduced in each signal by manufacturing
imperfections and variation in transmitter circuitry. One or more
enforcement authorities fingerprint each device which transmits.
Since these enforcement authorities may not be able to observe all
users of the network, they rely on some devices reporting measure-
ments. This results in a crowdsourced system where measurements
from many low cost devices are combined for fingerprinting.

The contributions in this work include:
• Examining several ways of combining receiver measure-
ments, which we classify in three levels based on where in
the fingerprinting process the measurements are combined.

• Demonstrating a nonuniform reconstruction algorithm for
combining multiple observations of bandpass signals.
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• Discussing how mismatch in receiver characteristics will
affect low level combinations of measurements, motivated by
mismatch in interleaved analog to digital converters (ADCs).

• Show that crowdsourced measurements can provide better
performance for transmitter identification than measure-
ments from an individual receiver, under some conditions.

The paper is organized as follows: in the next section we describe
a DSA network and outline a basic threat model. In Section 3 an
overview is given of existing works on fingerprinting and crowd-
sourcing in DSA networks. Next, preliminaries are described in-
cluding the basic steps to fingerprinting and three possible levels
to combine crowdsourced measurements at. In Section 5 we define
combinations used for each level, and discuss how mismatch be-
tween receivers can impact low level combinations. In Sections 6
and 7 the experimental setup and results are presented for these
methods as well as performance without crowdsourcing. We con-
clude in Section 8, including some possible extensions to this work.

2 SYSTEM & THREAT MODEL
We describe a DSA network in more detail and the role fingerprint-
ing can play in authenticating device identities. This is followed by
a description of an attackers capabilities and objectives, and some
limitations to the system model made to simplify analysis.

2.1 System
DSA networks allow re-using already licensed spectrum. A PU
holds an existing license which they use only intermittently in time,
space, or frequency. Secondary users are allowed to transmit oppor-
tunistically when the PU is absent. This allows for more efficient
usage of existing spectrum, but introduces a number of challenges
including reliably detecting the presence of the PU and identifying
secondary users which misbehave. DSA networks are not tied to a
specific technology, but exist alongside existing transmitters such
as mobile telephone, television, or radar[13, 28].

We consider a DSA network, similar to that described in [6, 13],
consisting of a central authority to manage spectrum allocations,
individual users, and enforcement authorities. The central author-
ity’s responsibilities include allocating bandwidth and channels to
individual users, changing allocations in response to reports of bad
behavior, and preventing interference with the PU.

One or more enforcement authorities (enforcers) work to prevent
abusive behavior. Misbehaving users have their allocation changed
or their access blocked entirely, while users that are well behaved
or helpful are rewarded with better spectrum allocations. There are
not enough enforcers to observe every area covered by the DSA
network, due to the cost and difficulty in deploying a large number
of devices. Consequently, the enforcers rely on users reporting
their observations of the physical layer to sense the channel and
identify abusive users. The central authority can reward users who
report measurements with additional bandwidth or more favorable
allocations. This has been considered for spectrum sensing [19],
here we extend it to allow device identification. This is similar
to existing methods which use crowdsourced measurements of
received signal strength (RSS) to identify a device’s location [26], but
our method links a device’s identity to their transmitter hardware
rather than location.

Each user is a device typically consisting of a transmitter and
receiver, and may have some computational capabilities. These may
include mobile phones, tablets, or wireless access points[12, 13].
Consequently, the users are not homogeneous: their receivers may
operate at different sampling rates, have different quantization
levels, and receive different levels of interference and fading.

In the following, we consider two types of users. The device
under test (DUT) is a user whose identity we are interested in. Only
a single DUT is considered at a time; any user transmitting may be
the DUT. The DUT’s transmitter is of interest, as this is what is fin-
gerprinted. Secondly, we are interested in receivers. These are users
with ability to observe the DUT’s signal, and send measurements
to an enforcement authority. The number of receivers reporting
crowdsourced measurements may be small, both due to the limited
receivers available and to reduce the overhead needed to report
measurements.

2.2 Threat model
An attacker wishes to transmit without authorization. We consider
attackers with hardware similar to that of legitimate users. Such low-
end hardware is unable to record the physical layer observations
of a signal with sufficient accuracy to impersonate other devices in
a feature replay attack [5]. It is capable of recording and replaying
a higher layer’s information to steal digital identifiers.

Two attacks are considered. In the Sybil attack an attacker as-
sumes multiple identities [23]. This may be a user of the system
who wishes to avoid having misbehavior tied to their identity, or
who has already been identified as malicious and banned. Finger-
printing at the physical layer can be used to identify this attack, and
link the attacker to a known device. This can be done by verifying
the DUT against each identity known to the enforcement authority,
and taking likely matches. A related attack is the primary user
emulation attack, where an attacker impersonates the PU. Since
secondary users must not interfere with the PU, an impersonator
has unrestricted access to the PU’s spectrum. Fingerprinting meth-
ods have also been proposed to verify the PU’s identity[18] and
detect this attack.

We do not consider attackers attempting to corrupt crowdsourced
measurements.Malicious devicesworking individually or in a group
could send false measurements to mislead the enforcement author-
ity. This is a legitimate concern, but outside the scope of this work.

3 RELATEDWORK
Before our describing our approach to crowdsourced fingerprinting,
we review a number of works related to the proposed method. First
are works describing the current state of the art for PLI, and works
that combine multiple measurements for fingerprinting. Last, uses
of crowdsourced measurements in DSA networks are covered.

3.1 Fingerprinting works
A good overview of fingerprinting wireless devices at the physical
layer is given in [5], as well as [23] which also covers fingerprinting
methods using higher layers. These cover a number of scenarios
where PLI is used in place of or to augment traditional identifiers.
Most works use the same signal capture setup to gather reference
and test data. Devices fingerprinted include RFID chips, WiFi, and

2



Crowdsourced measurements for device fingerprinting WiSec ’19, May 15–17, 2019, Miami, FL, USA

GSM. A variety of features have been used including power spectral
density estimates, fast Fourier transform (FFT) coefficients, discrete
wavelet transform coefficients, clock skew, and a variety of statistics
extracted from the signal[5]. Features are extracted from a constant
portion of the signal (such as synchronization symbols) or portions
that contain arbitrary data. A number of works use multiple frames
taken at different times, typically by taking the mean of a feature
across all frames to reduce the signal to noise ratio (SNR) [4, 5].

Most works on fingerprinting (including this one) use high end
hardware to observe signals. It is likely that some results will not
hold when lower cost devices are used. In [18] fingerprinting is per-
formed using low cost software defined radios (SDRs) as receivers.
The performance of individual receivers varies substantially, al-
though at a high SNR most provide acceptable performance for
fingerprinting. Having a central authority with high end hardware
(an oscilloscope) collect and distribute reference data to individual
receivers is also examined, but it is found that this fails as finger-
prints are specific to the receiver when low-end receivers are used.
In [29] fingerprinting is examined in the context of identifying fake
GSM base stations. However, using reference and training data from
different transmitters is found to have no impact on performance.
This shows that, in some cases, low-end hardware can be used
in a fingerprinting system successfully. The same receivers (Ettus
N210s) are used as in [18]), but the results are much better. This
difference may be due to using a higher SNR (40dB, versus 15dB),
different features, or other aspects of the experimental setup.

Using deep learning to identify cognitive radios is examined
in [16]. Substantial pre-processing of each signal is undertaken
prior to feeding it to a neural network. Signals are synchronized
in time and frequency to provide the best performance. A neural
network is trained to find the probability that the DUT generated
the test data.Each frame is broken into segments, and the neural
network’s output for each segment is combined by multiplying the
probabilities. In [2] several ways of combining measurements are
given. Multiple frames are averaged to provide better reference data
in training. In testing, multiple frames are used, but each is tested
individually and the probabilities combined. This is combined with
a committee of weighted classifiers, one classifier per feature. The
methods are applied to multiple frames and features, rather than
multiple observations of a single frame as in this paper.

3.2 Crowdsourcing measurements in DSA
A number of works have looked at crowdsourcing measurements
in DSA networks. In most cases the objective is spectrum sensing.
The nature of DSA requires that sensing be done securely [3]. A
malicious user could manipulate decisions by reporting false sensor
readings. Proposed solutions include more robust statistics, having
a subset of known trusted users, and tracking each user’s accuracy
to create a per-user reputation [28] . An overview of spectrum
sensing is given in [27], and includes some cooperative algorithms.
Rules for combining crowdsourced observations are given. Most
rules use hard decisions (a binary value indicating if the channel
is occupied) although soft decisions (reporting a confidence level)
have better performance with a small number of users.

In other works the objective is similar to fingerprinting, in that
an attacker must be differentiated from a legitimate user. Crowd-
sourced measurements of RSS can be used to locate the source of a
transmission[26]. These “location fingerprints” are not unique to
each device, but rather a physical location. Attackers which move
or are located close to a legitimate user may be misidentified.

4 PRELIMINARIES
Before examining crowdsourced fingeprinting, we first lay out the
steps to perform fingerprinting and define several ways of combin-
ing crowdsourced observations of the DUT that could be used in a
DSA network.

The following notation is used throughout the paper:
y A signal, generated by the DUT and used to verify the

identity of the DUT
f (y) A function to extract features from a signal, y
T Test data from the DUT, T = f (y)
R The reference data for the DUT’s asserted identity
d(R,T ) The distance between reference and test data
V (y) The soft output of a fingerprinter, expressing confidence

in the DUT’s asserted identity
yi An observation of signal a signal from the DUT by

receiver i , consisting of quantized signal levels
C(. . . ) A function combining multiple measurements of a sig-

nal, defined in the following sections
We assume that appropriate reference data is available. The refer-
ence data used in each scenario is described in the experimental
setup, although that is not a focus of this paper.

4.1 Device fingerprinting
Fingerprinting can be used to identify the DUT or to verify the
DUT’s identity. Identification picks the most likely identities out
of all seen by the fingerprinter, or determines that the device is
unknown to the fingerprinter. Verification determines if the DUT’s
asserted identity is correct. We only consider verification, however
identification can be performed by verifying against all known de-
vices and picking the most likely identity or none at all. Verification
is performed as follows:

(1) The DUT’s asserted identity is extracted from the signal
(2) A set of reference features, R, known to come from that

identity are taken from a database of reference data
(3) Test data is generated by extracting features from the ob-

served signal, T = f (y), typically using the identifier or
another constant portion

(4) Reference and test data are compared, d(R,T )
(5) The DUT’s identity is accepted if it falls within a predeter-

mined threshold
These steps are depicted in black in Figure 2. A variety of features
have been used, as mentioned in Section 3. Frequency based finger-
prints have been found to perform well, and provide a large set of
features with good performance [1, 4]. We use them in this work,
and describe them fully in Section 6.1. The distance metric used to
compare reference and test features can be chosen in a number of
ways. Euclidean distance, cosine distance, or Mahalanobis distance
all work well depending on the features used [1]. Each possible
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Figure 2: Steps in a typical fingerprinting systemusing a sin-
gle receiver (black). Crowdsourced approaches are marked
in blue, with the responsibilities of individual receivers and
the enforcement authority shown. Different combination
levels are labeled in italics.

threshold corresponds to a single true accept rate (TAR) and false
accept rate (FAR).

The FAR describes how often the DUT is accepted when it is
not the user it claims to be. This should be low for the system to
keep out intruders. The TAR describes how often the verification
system correctly identifies the DUT as a legitimate user, and should
be high to allow honest users to access the system. The threshold
provides a trade off between these two statistics.

4.2 Levels of crowdsourced measurements
We now consider crowdsourced measurements for fingerprinting.
When multiple observations of a signal (or features extracted from
it) exist they can be combined at several points in the fingerprinting
process, which we designate

(1) high combining the outputs of each receiver independently
verifying the DUT’s identity

(2) medium combining the features extracted from the signal
observed by each receiver

(3) low combining the sampled signal each receiver observes
These levels are depicted in blue in Figure 2. Clearly, each individual
receiver must observe the signal from the DUT and the enforcer
must make a final decision on the DUT’s identity. High level al-
lows each receiver to independently fingerprint the DUT using
whatever methods they choose, the enforcer then combines these
observations. Medium level combines multiple estimated features
from each receiver. The low level combination requires the enforcer
to combine signal observations from all receivers. Several options
are available – we examine methods to combine the observations
into a higher resolution signal. This signal can then be used with
typical fingerprinting techniques.

The high and medium level methods are included primarily for
reference, and are similar to existing methods used on multiple
frames but applied to multiple observations of the same frame. We
are most interested in low level combinations, covered last, which
are based on combining multiple receivers’ observations of a signal
into a higher-resolution version. This allows each receiver to report
arbitrary samples, including uniform samples with a rate below
Nyquist and nonuniform subsets of the observed signal.

5 CROWDSOURCED MEASUREMENTS
We now examine each method. The performance of the different
methods can be compared in several ways, including in terms of:

(1) overall performance
(2) bandwidth required to sendmeasurements between receivers

and the enforcement authority
(3) computational resources required at each receiver
(4) impact of mismatch on performance
Performance is evaluated fully in Section 7, and is evaluated

in terms of the previously defined TAR and FAR. The bandwidth
required to report observations should be minimized. By extracting
more complex features less data can be sent. However, receivers
may not perform substantial calculations due to computational or
power constraints. Lastly, mismatch occurs when characteristics
of receivers are not identical and their output is combined. Several
types of mismatch related to interleaved ADCs have been analyzed.

(1) Offset occurs when DC offset of receivers is non-zero.
(2) Gain mismatch occurs when receivers exhibit a different

range of gain, as will occur due to fading in the wireless
channel or variation in amplifiers.

(3) Timing mismatch occurs due to differences in path length,
unsynchronized receiver clocks, and independent noise in
the triggering of each receiver.

(4) Bandwidth mismatch occurs when receivers exhibit differ-
ent frequency response, due to frontend hardware and the
channel used.

These primarily impact low level combinations. The processing
done to extract features in high and medium levels can help correct
for gain and offset mismatch, and minimize the effects of timing
mismatch. As each level of combination is described the effects of
mismatch are also given. Mismatch is discussed in more depth in
Appendix A.1, including further solutions to mismatch.

5.1 High: combining fingerprinter outputs
In high level combinations each receiver acts as a fingerprinter
or verifier, and the enforcement authority only combines the final
confidence level of each receiver. This can be seen as similar to a
committee of classifiers [2], but with each classifier consisting of
a receiver independently sampling the signal, extracting features,
and comparing these features to reference data. The measurement
shared by each receiver can be hard or soft decisions. Hard is sharing
a yes or no decision about the DUT’s identity, while soft sharing
uses a confidence level[28]. Additional steps need to be taken with
soft combinations to limit the effect an untrusted receiver reporting
false observations could have, although this is outside our system
model. Hard decisions are naturally more robust to manipulation
by a single user.

Soft decisions can be combined using the joint probability of all
observations, found by multiplying outputs.

VH (y) = CH (y1, ...,yn ) =
n∏
i=1

d(R, f (yi )) (1)

This is the same form used in [16] to combine classifier confidence
in multiple subsections of a single frame. In practice, taking the
mean of the log of the outputs provides greater numeric stability

4



Crowdsourced measurements for device fingerprinting WiSec ’19, May 15–17, 2019, Miami, FL, USA

and allows easily changing the number of receivers reporting mea-
surements. This method is very flexible. Receivers can use different
feature sets as only the final verifier output is reported. Since each
receiver’s observation is processed independently the verifier’s out-
put is unaffected by offset or gain mismatch. It is also very low in
terms of the amount of bandwidth required to report measurements
to the enforcement authority.

Although not considered here, it is simpler for an attacker to
manipulate by sending false measurements. Each receiver must
have computational resources and reference data for any DUT.
Although the medium and high level combinations would also work
with the enforcement authority receiving signal observations and
extracting features independently, this would negate the advantage
of requiring less bandwidth.

5.2 Medium: combining features
Medium level combination combines the features extracted by each
receiver. To do this, the mean of each feature over all observations
is taken. Similar to many works which average multiple frames in
time[5], this reduces the SNR as more observations are used. The
resulting verifier is given by

CM (y1, ...,yn ) =
1
n

n∑
i=1

f (yi ) (2)

VM (y) = d(R,CM (y1, ...,yn )) (3)

Other statistics, such as themedian, could also be used. As with high
level combinations, this is not affected by most types of mismatch.
It requires medium overhead in terms of bandwidth, and provides
some of the same flexibility as high level combinations. The number
of receivers used can easily be changed, and the receivers can
operate with different parameters as long as they are able to extract
the same features. For some features, such as those based on the
power spectral density or wavelet coefficients, this may require
receivers operating at the same sampling rate. Receivers require
some computational resources to extract features, but less than
high level as they do not need to compare reference and test data.

5.3 Low: combining signal observations
Low level reconstruction uses observations from all receivers to
attempt to reconstruct the original signal. The desired features can
then be extracted from the reconstructed signal. By incorporating
observations from multiple receivers the reconstructed signal has a
higher sampling rate and should give better estimates of a feature’s
value. Designating this function as CL , verifier output is

VL(y) = d(R, f (CL(y
1, ...,yn ))) (4)

All processing is done at the enforcement authority so no pro-
cessing capability is required at the receivers. The reconstructed
signal has a uniform sample rate, making it easier to process. Al-
though outside the scope of our attack model, it is more complex
for an attacker to subvert. An attacker would need to know how
features are extracted, what values other receivers have reported,
and how their own reported measurements are used.

Of the combinations considered here, this has the highest band-
width requirements, as the entire observed signal must be reported.

The enforcement authority has more complex processing require-
ments and must account for mismatch between receivers, discussed
in Section 5.3.3. Lastly, this method allows individual receivers to
report signals with a sample rate below Nyquist. As long as the
total samples from all receivers exceed the Nyquist rate the sample
rate of any individual receiver is unimportant. The sample times
still must be known approximately and each receiver must have
sufficient bandwidth in the frontend hardware to accurately sample
any signals in the frequencies of interest. Before elaborating on this
method, two simple alternatives to handling low level combinations
are given.

5.3.1 Alternatives for low level data. Two simple approaches for
combining the signals observed by each receiver are considered.
Neither of these methods takes precautions to handle mismatch
between receivers.

The first approach is to take the average across samples from each
receiver, without correcting for timing or bandwidth mismatch.

CL(y
1, ...,yn ) =

1
n

n∑
i=1

f (yi ) (5)

The desired features are then extracted from the resulting signal.
Computationally, this is the simplest low level approach. However,
it requires that the sampling rate of individual receivers be high
enough to capture the signal without aliasing, negating one of the
benefits of low level combinations.

The second alternative is to interleave samples from each signal
and extract features from the higher resolution signal. We consider
two approaches to correct for timing error.

(1) ordering the interleaved signals by start time to minimize
timing error

(2) ignoring timing error and interleaving the samples with no
regard to when each signal begins

Determining the ordering of observations introduces some complex-
ity, compared to averaging samples. Neither approach takes into
account mismatch between receivers as will occur in a realistic en-
vironment. This has a substantial negative impact on performance,
as will be shown in Section 7.

5.3.2 Nonuniform sampling algorithm. Nonuniform sampling
algorithms provide an efficient and flexible approach to reconstruct
the original signal[8]. Other approaches to handling nonuniformly
sampled data are review in Appendix B. Given measurements
from several receivers, y1, ...,yk , with corresponding sample times
t1, ..., tk we want to find an equivalent uniformly sampled signal.
We designate the combined observations ỹ, sampled at times t̃ , so
that t̃j represents the j th sample time out of all receivers and ỹj is
the corresponding value (i.e. t1 represents the first sample time out
of all receivers with corresponding value ỹ1, similarly ỹr is the last
sample taken at time t̃r ). The signal ỹ is bandlimited, to bandwidth
B, since each receiver frontend contains a bandpass filter.

The frequencies, a, in a bandlimited signal y sampled at nonuni-
form times t̃ can be found by

a = T−1b ∈ C2M+1 (6)
5
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whereM is the number of uniformly sampled frequencies to recon-
struct within B, and

Tl,k = Tl,−k =
r∑
j=1

e−2π i(l−k )t̃j

bk =
r∑
j=1

ỹje
−2π ik t̃j

If frequency based features are desired the coefficients a can be
used directly, removing the need to find the time domain signal.
Otherwise, the value of y at time t is found by [8]

y(t) = CL(t ;y1, ...,yn ) =
r∑
j=1

ake
2π ikt (7)

This provides a uniformly sampled signal, which can then be used
to extract fingerprinting features.

There are several things to note when solving (6) [8]. First, the
Toeplitz structure of T allows for efficient solutions using iterative
solvers, such as Levinson recursion. The dimension ofT depends on
the number of frequencies of interest, not on the number of sample
points. This makes the solution computationally feasible even if
a large number of samples are to be processed. Guarantees on
convergence given in [9] are based on the maximum gap between
sample times. These may not apply to bandpass reconstruction, but
our empirical results show the method works well in most cases.

In implementing this algorithm some further points were discov-
ered. Although a bandlimited formulation is given here following
[8], it can easily be modified to handle bandpass data. This allows
handling data at a sampling rate corresponding to the modulated
data rate rather than the carrier frequency. This also significantly
reduces computation time, as the majority of a are zeros when the
sampling rate is significantly larger than the data rate. If the sam-
pling geometry, t̃ , is constant the Toeplitz matrixT and a substantial
portion of b can be pre-computed, giving a much more efficient
implementation. Consequently, changing the number of devices
reporting signals, the sample rate of devices, or the total number
of samples used will incur a substantial computational cost when
using this approach.

5.3.3 Mismatch. Low level combinations are most impacted by
mismatch between receivers, since measurements are combined
directly without much of the pre-processing used to extract features
in medium or high level combinations. The nonuniform sampling
algorithm incorporates more timing information than the other
approaches considered in this section, as it removes or minimizes
timingmismatch. Both filtering and random interleaving can reduce
the errors introduced by other types of mismatch, described further
in Appendix A.1. Equation 6 incorporates both these solutions
to mismatch. By finding a bandlimited signal, spurs introduced
by mismatch are removed if they are outside the frequencies of
interest. This also corrects for some distortion introduced in the
band of interest rather than just discarding frequencies outside
of it. Additionally, if the sample rates are not uniform across all
devices this introduces a degree of pseudo-randomness similar to
random interleaving. This does not remove all effects of errors, but
it decreases the errors in the frequency domain. Consequently, this

approach to low level combinations should perform well even with
some mismatch present.

6 EXPERIMENTAL SETUP
The experimental setup is described, beginning with the frequency
based features used, and how features are selected. The data col-
lection setup is described, and the experiments presented in Sec-
tion 7 are given. These include comparisons of low level methods,
performance simulating several receivers without mismatch, and
performance with actual mismatch present.

6.1 Subband frequency features
We use frequency based features, although the methods described
do not depend on any specific type of feature. Two separate types
of frequency fingerprints are used to present results. The low level
combinations use the magnitude of frequencies of an irregularly
sampled signal, using (6).

The high and medium combinations and the alternative low
level methods in Section 5.3.1 use the log of the magnitude of FFT
coefficients. Frequencies between fl = fc−B/2 ≤ f ≤ fc+B/2 = fu
are extracted as features, where fc is the carrier frequency, and
the signal has bandwidth B. Denoting the kth FFT coefficient of N
sample points by Fk , a set of NB

Fs features is given by

f (y) =

{
Fk (y) :

flN

Fs
≤ k ≤

fuN

Fs

}
(8)

Typically the sampling ratemust satisfy Fs > 2fc to prevent aliasing.
However, subband sampling is used with (8) to allow for lower
sampling rates, comparable to what would be available in consumer
hardware. A bandpass signal of bandwidth B can be accurately
reconstructed if Fs > 2B and 2fu

n ≤ Fs ≤
2fl
n−1 for an integer n

[22]. In this case, the frequency bounds become f̃l = fl mod Fs and
˜fu = fu mod Fs . In this case B should be related to the bandwidth of
the receiver’s frontend filter rather than signal bandwidth, so that
otherwireless signals do not alias into the bins of interest.While this
is somewhat specific to our setup, since we acquire data modulated
with the carrier from the oscilloscope, SDRsmay operate in a similar
manner by sampling to observe a large range of bandwidths rather
than demodulating a signal at a specific frequency. An example of
these features is shown in Figure 3, as well as the features extracted
using (6).

6.2 Feature selection
There are a large number of possible feature sets when using radio
frequency (RF) features. Including a large number features that
do not distinguish well between transmitters will decrease perfor-
mance. Reducing the number of features considered also improves
computation time.

The Fisher criterion is a simple way to evaluate how well individ-
ual features can distinguish between transmitters. It is found as the
ratio of average within class variance to total feature variance [11].
It is easily calculated, and can be made more resistant to outliers by
using robust calculations of variance. The best rated features are
then taken, shown in Figure 3, and the remainder discarded.

The distinguishability of FFT based features can also be evaluated
based on amplitude. Frequencies with higher power give features
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Figure 3: Example of features and feature selection. Upper:
features extracted using Eq. (6), showing mean, quartiles
shaded. Center: frequency features using Eq. (8). Lower: fea-
ture selection rating. There is some variation between the
methods, and low level features favor features outside the
main lobe.

with greater distinguishability. Fisher’s criterion selects similar set
of features, although it emphasizes features near the sidelobes of the
signal’s spectrum and ignores features nearest bins corresponding
to the carrier.

6.3 Data gathered
We describe steps taken to collect data including transmitter setup,
receiver setup, and processing. The sampling rate and number of
samples are intentionally chosen to provide less than ideal perfor-
mance for a single receiver, and demonstrate what improvements
crowdsourcing allows for. Although results are shown for only a
single sample rate and signal length the choice of these parame-
ters has a substantial effect on the performance of crowdsourced
methods as well as individual receivers. Further analysis is needed
to determine the causes. The signals used in most of the experi-
ments were decimated to a rate of 40 MHz, which is similar to that
available in commercial off the shelf hardware (such as WiFi, which
uses a bandwidth of 20MHz). However, there may be less noise and
other advantages to the higher end hardware used.

6.3.1 Transmit setup. Ettus B210 radios [7] are used as the DUT.
Each board has two transmit frontends, which we treat as separate
transmitters. This provides a total of twelve transmitters. Each is
connected in turn to a transmit antenna by an SMA cable, with the
same antenna setup used for all transmitters.

The signal sent is generated in GNU Radio (version 3.7.10.1), on a
computer running Ubuntu 14.04 LTS. The same bit sequence is sent
in all frames, simulating a real scenario where an identifier or other

Figure 4: Data capture setup, showing transmitter and the
oscilloscope with one receive antenna. Transmit and receive
antennas are located on opposite sides of the lab.

Figure 5: Diagram of antenna layout used. All dimensions
are in inches, height ismeasured fromfloor. Tables, cabinets,
other furniture and equipment below antennas are omitted.

constant portion of the message would be used for verification. The
bit sequence was randomly chosen. This constant bit sequence is
modulated using 4QAMwith a bandwidth of 2.5MHz and sent over
the wireless channel at a carrier frequency of 2.422GHz.

6.3.2 Receiver setup. Data is collected in a wireless environment
with other users transmitting. Three separate antennas connected
to different channels of the same oscilloscope are used to simulate
multiple receivers, shown in Figure 4. The layout of transmit and
receive antennas is shown in Figure 5. The transmit antenna is
separated from each receiver by 3.8 to 5.1 meters. The different
channels introduces bandwidth and timing mismatch. Two of the
antennas are placed above most foot traffic in the lab to avoid
random shadowing. The third is placed 48′′ above the floor with
line-of-sight obstructed by sheet metal.

The received signals pass through a bandpass filter and amplifier
before being sampled by the oscilloscope[20] at 25GHz. Amplitude
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based triggering on one channel triggers all simulated receivers at
the same time, however due to different signal paths a constant tim-
ing offset exists between channels. The filter covers the ISM band,
so a significant amount of other wireless activity is still present.
Each frame must pass several amplitude based checks to ensure
that it is the signal we are interested in, and not another wireless
signal. Running the capture setup when the DUT is not transmitting
verifies that less than 1 % of the frames captured are unwanted.
Each channel saves 5M samples when a valid frame is detected, and
the capture setup is run until 1500 records have been collected from
each transmitter.

The transient portion of each frame is discarded, so that the
steady state portion is used for fingerprinting. The signal is deci-
mated to simulate a lower sample rate. Before decimating, a random
offset is chosen to simulate triggering with the lower rate ADC (e.g.,
the offset is randomly chosen as an integer in [0, D) samples, where
D is the decimation factor). After downsampling, 2048 samples are
taken from each frame, and normalized to have unit power. The
normalization also partially fixes offset and gain mismatch.

6.3.3 Feature extraction and verifier setup. The following steps
are common to all experiments, unless otherwise specified. The
frames are split into a reference and test set for each DUT. A con-
tinuous set of 800 frames from the DUT is taken as reference, and
the remaining frames from the DUT are used as the test set, as well
as all frames from other transmitters. Each frame is decimated to
have a sample rate of 41.6 M samples. Frequency features covering
a total of 10MHz are taken, totaling 983 bins.

The features in the reference data are rated using the Fisher
criterion, and the top 250 are taken for reference and test data.
The reference and test data are then compared using Mahalanobis
distance. The TAR is found using the test data from the DUTs, and
the FARs with the test data from all other devices.

6.4 Crowdsourced scenarios tested
Next, we describe several experiments to determine the perfor-
mance of crowdsourcing methods.

6.4.1 Low level combinations. We consider five methods for low
level combinations, based on those in Section 5.3.2 and 5.3.1.

i estimating frequencies using (6) when sample times are
known exactly

ii using (6) with approximate sample times
iii averaging samples using (5)
iv the FFT of the interleaved signals ordered by start time
v taking the FFT of the signals interleaved without regard to
start time

Method i uses the exact sampling times to create the matrix T in
(5) for each frame observed. This introduces a separate sampling
geometry for every frame observed, which requires recomputing
T for each frame observed. This is very costly. Method ii uses the
same algorithm butT is created with uniform sample times. The re-
ported samples are ordered to approximate the uniform times. This
removes some — but not all — timing error. This same technique
is used to find approximate times before interleaving in method iv.
Methods iii-v use the frequency features described in Section 6.1
once the combined measurements are found.

Three receivers are simulated using data from channel B. This
creates data with only timing mismatch. Any algorithms that per-
form poorly under these conditions are not worth pursuing. The
number of DUTs and frames processed for each has been reduced
due to the long computation time required for method i. The frames
are then split into reference and test data, and the reconstructed
frequencies used as features to find verifier performance.

6.4.2 Crowdsourced, no mismatch. Similar to the previous sec-
tion, performance without mismatch is found for all crowdsourced
methods. Due to the random offset done before decimation, each
receiver acts as though it triggers independently. This introduces
random timing mismatch in each frame due to triggering, but not
due to any specific device. Bandwidth, gain, and offset mismatch
are not present, which is similar to the situation where channel
equalization is performed.

The low level combinations are used as described in the pre-
vious section. For medium level the features extracted from each
receiver’s signal are averaged, then the frames are split into refer-
ence and test data.

The high level combinations have each receiver operating as a
verifier. For each receiver, the signal is taken, features are extracted,
and all frames are split into reference and test data. A comparison is
made, and the distance of that frame from the receiver’s reference
data is returned for each receiver.

6.4.3 Crowdsourced, with mismatch. The combinations are han-
dled as in the previous section. We use observations from the three
receivers described in Section 6.3.2. This introduces timing mis-
match due to the different path lengths in each the channel, band-
width mismatch due to different channels and receiver setups, offset
mismatch, and gain mismatch due to different amplifiers.

7 PERFORMANCE
Performance is shown for individual receivers as well as crowd-
sourced methods. The individual receivers are presented first, to
establish a useful baseline for crowdsourced performance. The low
level combination are presented next to find the best approach to
compare with the other crowdsourced combination levels. After
this results with only timing mismatch are presented, followed by
results where the receivers have timing, gain, offset, and bandwidth
mismatch.

Performance is described using the true accept rate (TAR) and
false accept rate (FAR), defined in Section 4.1. The TAR describes
the percentage of time that a legitimate DUT’s identity is correctly
verified. The FAR is the percentage when an attacker using a false
identity is not detected. The desired TAR is near one and the desired
FAR is close to zero. These statistics are related by the threshold
which the verifier uses. As the threshold increases the TAR in-
creases, at the expense of a corresponding increase in the FAR. This
trade-off can be visualized using receiver operating characteris-
tics. Receiver operating characteristics are found by taking TAR,
FAR pairs for all thresholds. Each point on the curve corresponds
to a particular threshold, and indicates the system’s performance
when using that threshold. Some works also use the equal error
rate, which is found by choosing a threshold so that FAR and TAR
are identical [5]. For our applications, having a high TAR is most
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Figure 6: Performance of each individual receiver. The line
of sight antennas perform best. The omnidirectional an-
tenna results in a lower SNR and poorer performance.

important, as this measures the impact the verification system has
on legitimate users.

7.1 Individual receiver performance
Before describing the crowdsourced experiments, it’s useful to
present results without using crowdsourced data, shown in Fig-
ure 6. Methods of combining crowdsourced measurements should
provide better performance than any individual receiver. Otherwise,
just that receiver could be used. Receiver B has the best performance
(not surprising considering it uses a directional antennawith line-of-
sight to the DUT). A TAR of 0.90 requires an FAR slightly over 0.15.
Receiver C has a similar behavior for TARs below 0.5, but requires
much larger FARs as the TAR approaches 1. Receiver A (which uses
an omnidirectional antenna) exhibits the worst performance, with
a FAR over 0.40 for a TAR of 0.9.

7.2 Crowdsourced performance
The results using crowdsourced combinations are now considered.

7.1 Low level combinations. There is considerable variation be-
tween the low level combinations even when there is no mismatch
between receivers, shown in Figure 7. Interleaving the signal and
taking the FFT (v) has the worst performance. This is regardless
of whether the ordering is approximate or random. A TAR of 0.9
requires an FAR above 0.4. In contrast, the single receiver in Figure
6 can achieve a TAR over 0.95 while allowing an FAR of only 0.20.
Averaging before performing the FFT (iii) provides better perfor-
mance without incurring much computational complexity. It has a
better FAR by 5 to 8 over a range of values, but none of the alternate
methods can achieve a TAR over 0.8 and maintain a moderately
low FAR.

Equation (5) arguably provides the best performance. When sam-
ple times are known exactly features determined with the nonuni-
form sampling algorithm give performance equal to or better than
any individual receiver. Unfortunately, the exact sample times re-
quires substantially more computation so they are not analyzed in
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(ii) Eq. 5 approx.
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(iii) FFT-avg
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Figure 7: Performance low level methods, following the ap-
proaches outlined in Section 6.4.1. The approaches are based
on whether sample times are known exactly or approxi-
mately, and whether the FFT directly or a nonuniform sam-
pling algorithm is used.
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Figure 8: Performance of different combination methods
with nomismatch. All methods performwell, with high and
medium levels giving the best performance.Mediumoutper-
forms any individual receiver.

subsequent sections. In the remainder of results we show perfor-
mance for (ii) and (iii): nonuniform reconstruction with approxi-
mate times and taking the FFT of the averaged samples.

7.2 Crowdsourced, no mismatch. With no mismatch, shown in
Figure 8, the medium level gives the best results, followed by high
level combinations. Low level is comparable to high level for low
FAR, but has much worse performance than any methods if a very
high TAR is needed. The medium level outperforms receiver B,
showing that it can have better performance than any individual
receiver. High level closely matches receiver B, suggesting it is not
heavily impacted by receivers with poor performance. Both low
level combinations seem to be impacted by the poorly performing
receivers.
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Figure 9: Performance of different combination methods
with mismatch. Low-iii performs poorly, while low-ii im-
proves in performance, for very low FARs it exceeds any
individual receiver. Medium drops slightly in performance,
but still outperforms any individual receiver.

7.3 Crowdsourced, all mismatch. With mismatch the results are
substantially different, shown in Figure 9. The high level combi-
nation actually performs better than without mismatch, while the
medium level has a slight drop in performance. Both these effects
are probably due to the random variability in the choice of reference
data rather than being related to the actual performance. Surpris-
ingly, level (ii) outperforms the case with no mismatch as well. This
is more than can be explained by random variation (and has been
verified across multiple sets of reference data). However, low level
(iii) has much worse performance. It would be almost unusable in
most systems.

Further investigation is needed to determine under which con-
ditions this holds, but under the conditions tested high, medium,
and low level (ii) combinations can provide similar performance.
Although it seems much simpler, the low (iii) method fails when
there is mismatch in the receivers observations. In a practical sys-
tem, this performance might be improved by performing channel
equalization at each receiver to remove some mismatch.

7.3 Summary
In terms of performance there is not a clearly superior methodwhen
mismatch is present. Each may outperform others depending on
the desired operating point on the receiver operating characteristic
curves. Additionally, the sample rate and signal length were found
to impact performance substantially, which is not analyzed here.
For low FAR (under 0.10) the crowdsourced methods perform best,
with very similar performance among them. However, an individual
receiver can provide equal performancewhen the FAR is higher. The
added complexity of low level methods did not show a substantial
improvement in terms of performance, but it has other advantages
discussed next.

Besides performance, other characteristics of interest are summa-
rized in Table 1 for each method. Running time varies substantially
between methods. Not surprisingly, the additional computations
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low-i 0.00 4208.71 4096 arbitrary
low-ii 0.00 157.21 4096 arbitraty
low-iii 0.00 17.16 4096 above Nyquist
low-iv 0.00 7.06 4096 above Nyquist
low-v 0.00 7.18 4096 above Nyquist
medium 9.60 0.54 1000 above Nyquist
high 11.38 0.02 4 above Nyquist

Table 1: Performance characteristics of different methods.
Bandwidth assumes 4 bytes per feature and 1 byte per sam-
ple. Method low-v has been excluded as it has the same
characteristics as low-iv. Low-level computations allow for
a lower sampling rate and substantially less computation at
the receiver at the cost of increased bandwidth for reporting.

involved in low level combinations cause these to be the slowest
of the methods. Low level (ii) takes five times longer, for three re-
ceivers, than the medium level. Out of the methods with acceptable
performance characteristics, medium level combinations are the
most efficient to compute closely followed by high level. In terms of
bandwidth medium level combinations require substantially more
than the high level, but not quite as much as low level. However,
high level combinations require each receiver to store reference
data for any DUT they need to verify. It may be possible to use less
bandwidth with low level combinations by shortening the signal
length sent, or reducing quantization levels. Further examination is
needed to find the minimum number of samples required for good
fingerprinting performance.

8 CONCLUSIONS
Anumber of approaches to combining crowdsourcedmeasurements
have been examined. These can be used by an enforcement author-
ity in a DSA network to securely verify transmitters identities.
Advantages and downsides to all methods have been discussed. We
have found that medium level combinations provide consistently
good performance under most conditions. The low level meth-
ods investigated have varying performance, but we found that the
nonuniform reconstruction with approximate timing information
works well, exceeding medium level for some FARs when mismatch
is present.

Further investigation is needed to determine under what con-
ditions these methods will fail, and what types of data suite each
best. Additionally, this could be extended to

(1) take advantage of spacial diversity by weighting channels
according to SNR or other metric

(2) apply low level methods to an individual receiver using mul-
tiple frames, using observations in time instead of space

(3) examine low level combinations with observations from
receivers operating at sub-Nyquist sampling frequencies
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A MISMATCH
Here the types of measurement mismatch are covered in more de-
tail, followed by several approaches to removing mismatch. The
difference between reconstructed signals with and without mis-
match can be measured in terms of mean square error (MSE) in
the time domain or spurious free dynamic range (SFDR) in the
frequency domain. MSE measures the difference between samples
in each signal, while SFDR expresses the largest difference in the
frequency domain. Mismatch introduces spurs in the frequency
domain which reduce the SFDR.

A.1 Sources of measurement mismatch
The effects of offset, gain, timing, and bandwidth mismatch are
described, based on the models in [14].

(1) Offset mismatch occurs when a receiver has a non-zero DC
offset. If bi is the DC offset at receiver i , receiver i observes

yi = y + bi

If two receivers sampling at Fs are interleaved to form a signal with
rate 2Fs it is as though a signal with frequency Fs had been added
to the interleaved signal. In the frequency domain this introduces
spikes at the DC frequency and Fs , the Nyquist frequency of the
overall sampling rate [14].

(2) Gain mismatch is caused by ADCs at each receiver exhibiting
a different range of gain. When wireless channels are used it may
be caused by different amounts of fading in each channel. Receiver
i with gain α i will observe the signal as

yi = α iy

For two receivers the ideal interleaved signal without mismatch is
modulated by a signal of frequency Fs with power dependent on
the amount of gain mismatch [14].

(3) Timing mismatch has three causes in the crowdsourced data:
clocks at each receiver are not synchronized, path lengths from
the DUT to each receiver vary, and independent noise in each
receiver will cause each to trigger at different points in the signal.
Consequently, the signal each receiver records is

yi (t) = y(t + δ i )

where δ i is not constant across frames. This also reduces the SFDR
by introducing spurs in the frequency content. Consequently, tim-
ing mismatch will have a small effect on frequency based features
if the spurs are introduced outside the features of interest.

(4) Bandwidth mismatch is introduced by different responses
in the frontend of each receiver and each channel’s frequency re-
sponse. It is generally ignored in interleaved ADCs, as it can be
minimized with careful choice of hardware and design of signal
paths, but will be substantially larger in crowdsourced wireless data
due to channel effects. With bandwidth mismatch the signal at an
individual receiver is then

yi = y ∗ hi
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where hi is the frequency response of the channel for receiver i
and ∗ represents convolution.

Bandwidth mismatch has larger effects, and may affect some
types of features (especially frequency based features). Consequently,
it may have an effect on medium or high level combinations. The
other types of mismatch are not a substantial issue for high and
medium level combinations. Each receiver performs fingerprinting
independently, by the time measurements are combined mismatch
has been removed by forming an estimate of feature values or ver-
ifier probabilities. The effect of mismatch is largest on low level
combinations, when samples are combined from all signals to cre-
ate a higher resolution version. It can decrease the SFDR in the
frequency domain, or MSE in the time domain.

While it is tempting to ignore the mismatch and accept it as
part of each device’s measurements this would make fingerprints
dependent on the mismatch between users reporting and require
that the same devices always report observations. Additionally,
the effects of mismatch are dependent on the signal content, so
unrelated wireless signals can change the distortion introduced
by mismatch. It would be possible to discard observations from
devices with very bad mismatch, but they should still have some
information that can be used. For these reasons some correction
must be made, particularly for low level combinations.

A.2 Solutions to mismatch
There are a number of approaches to remove effects of mismatch.
Solutions developed for interleaved ADCs typically have minimal
overhead and realtime operation. These constraints less applica-
ble when processing crowdsourced data: some delay is acceptable,
longer observations of a signal are available (rather than correcting
each sample as it is generated) and more processing is possible.

Some approaches used in ADCs are not suitable, primarily

(1) using near-identical hardware and signal paths. With inter-
leaved ADCs it is possible to design a system in this way, however
in the crowdsourced case we cannot constrain users to have home-
geneous hardware. Even if that were possible, sampling times are
unsynchronized and the channel introduces timing mismatch and
bandwidth mismatch.

Methods used in ADCs may also be partially suitable, including

(2) Calibrating based on a known signal [21]. This would be
necessary for every DUT, and addresses offset, gain, and bandwidth
mismatch. Calibration would be tied to a specific channel, causing
issues if users move. Channel equalization may already be partially
performed by receivers, partially implementing this. Since receivers
trigger indepently this can not compensate for all timing mismatch.

(3) Filtering spikes and spurs introduced by mismatch. In the
frequency domain mismatch introduces spurious images of the
signal spectra. With a properly designed filter these can be removed,
provided they do not lie in the frequencies of interest.

(4) Using a randomized sampling order [21]. Having ADCs sam-
ple in a random order removes the spurs in the frequency domain.
The MSE is unchanged, but the error is spread out in frequency
domain so that the SFDR is increased. This is adequate for our pur-
poses, as long as no single frequency has large errors features based
on frequency content should perform well. This occurs to some

degree if receivers operate with different sampling rates, or could
be achieved by receivers reporting a subset of their observations.

Approaches that are infeasible in ADCs are possible, primarily
(5) Normalizing signals to remove gain and offset mismatch.

ADCs handle arbitrary signals, making this impossible. However,
for PLI we are interested only in modulated signals. In fact, normal-
ization is a typical step in most fingerprinting setups to ensure that
signals have unit power and can be reasonably compared.
Approaches (4), (5), and (6) are part of the proposed low level re-
construction method, suggesting it can handle some mismatch.

B NONUNIFORM SAMPLING
We briefly review some approaches to handling nonuniformly sam-
pled signals which are applicable to the low level combinations
in Section 5.3. An early work is [25]. Several key cases for recon-
structing a nonuniformly sampled bandlimited signal are given. Of
interest here are arbitrary sampling sequences. Unfortunately the
method given requires inverting a matrix whose size is related to
the number of sample points, which makes all but very small prob-
lems impractical. A second case, periodic nonuniform sampling,
occurs when several sample sequences with the same sample rate
are interleaved with irregular offsets between sequences. This may
be of interest in interleaved sequences, but requires all sequences
have the same sampling rate.

Correcting the FFT of nonuniform data is considered in [17]. A
transformation is found between the FFT of samples with uniform
and nonuniform sample times. This also requires matrix inversion,
limiting it to small problems. A "nonuniform FFT" has also been
developed, see for example [10]. These methods generally take
the FFT of samples treated as uniformly sampled, then apply a
correction. However, we are not aware of any bounds on how much
irregularity is allowable in the sampling sequence.

The approach chosen uses a reconstruction method based on the
mathematical theory of frames, which allows finding a bandlimited
signal given irregular sample points. It requires some constraints
on signal bandwidth and the maximum difference between sample
times [9]. The simplest solution is using Richardson’s iteration,
which allows sacrificing some accuracy for better computational
times. Unfortunately this converges slowly and is very sensitive to
the sampling geometry. Additionally, it requires reconstructing a
bandlimited signal, rather than bandpass signal which results in
significant computation for frequencies which are not present in a
bandpass signal. Strohmer et. al improve on the iterative method in
[8], which we describe in Section 5.3. This provides a direct formu-
lation as a Toeplitz system. This has a faster rate of convergence, is
less sensitive to inputs, and can handle a much larger number of
samples than iterative solvers. It is also more computationally effi-
cient and stable, and can take advantage of the additional structure
provided by bandpass data.
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