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Abstract—Increasing demand has led to wireless spectrum
shortages, and many parts of the existing spectrum are heavily
used. Dynamic spectrum access (DSA) has been proposed to allow
cognitive radio networks to use existing spectrum more efficiently.
It will allow secondary users to transmit on already allocated
spectrum on a non-interference basis. Cognitive radios are able
to change bandwidth and other transmission characteristics to
take advantage of this spectrum. To enforce spectrum access
rules it is necessary to uniquely identify all devices on the
network. Manufacturing variation cause every device to have
minute differences. Physical layer identification (also called device
fingerprinting) techniques allow identification of devices based
on small but unique variation due to these imperfections. Fin-
gerprinting is very sensitive to any changes in the capture setup
or device’s environment. The changes in bandwidth that would
occur in a DSA system cause device fingerprinting to fail. In this
paper, we extend current device identification methods to include
identification of devices with changing bandwidth. Experimental
results are demonstrated on a collection of over 50 transmitters,
with a significant improvement over current methods.

I. INTRODUCTION

As wireless transceivers find an ever increasing number of
applications the efficient allocation of spectrum has become
an important topic. Many portions of the radio spectrum are
unregulated, leading to interference among competing users.
Licenses to other portions of the spectrum have been sold. This
leads to large chunks of spectrum that are unused at various
times, in different geographical locations, or in some subset of
the spectrum, when the licensed user (primary user (PU)) does
not use it. As demand for wireless spectrum increases, more
efficient spectrum allocation is needed. DSA networks will
allow cognitive radios to dynamically allocate unused spectrum,
and to assign it among various users in the network.

Allowing transceivers to operate in this manner introduces
several security concerns. Selfish users can transmit outside
their allowed bandwidth, power levels, or time intervals. This
could cause interference to others in the DSA network, and
to licensed PUs. For these reasons it is useful to identify and
track cognitive radio transmitters to enforce spectrum access
rules. It is desirable that no modifications are made to the
PU’s transmission so that compatibility is maintained with
legacy systems with spectrum licenses. While typical security
identifiers, such as MAC addresses or encryption keys, could
serve this purpose, they can be stolen (in the case of encryption
keys) or easily forged (for MAC addresses), and introduce
overhead to the system.

Physical layer identification (PLI) allows identifying devices
based on what they are, rather than something they have [1],

[2]. It is often referred to as device fingerprinting, in reference
to traditional fingerprinting techniques that identify individuals
based on unique biometric markers. PLI relies on identifying
small differences in each device’s output that occur due to age,
circuitry, and manufacturing variation in otherwise identical
models. Authorized users are “enrolled” in the system by
obtaining examples of their signal. When a device asserts
an identity, it is compared with the enrolled signals for that
device. When the comparison is sufficiently close the device
is accepted. In this way authorized devices can be identified
with no additional overhead to the system.

However, the variations in a cognitive radio’s signal due to
changing bandwidth is much larger than the variation unique
to each device. This causes current fingerprinting techniques
to fail. We propose a new fingerprinting method which allows
identifying devices with changing bandwidth, and which could
be extended to other transmission parameters.

A. Cognitive radio

Software defined radios (SDRs) are able to dynamically
reconfigure transmission parameters such as carrier frequency,
bandwidth, transmit power, and even modulation waveform.
Software defined radios and traditional transmitters share many
of the same components, including digital to analog converters,
mixers, and pulse shaping filters. However, in a cognitive
radio system the hardware is controlled by higher level
protocol layers. This allows dynamically adjusting transmission
parameters (such as changing bandwidth or modulation type)
in response to changing channel conditions and application
demands [3].

The dynamic nature of cognitive radios makes fingerprinting
challenging. PLI methods are very sensitive to the training data
enrolled for each device. The enrolled data needs to be a portion
of the signal that is the same in all transmissions by the device.
Any change in the signal received reduces the effectiveness of
the system: even using different antennas significantly degrades
performance [4]. A device in a DSA system may change its
transmission parameters to use different modulation types and
transmit at several carrier frequencies and bandwidths. Due to
the dynamic nature of the system, it may not be possible to
know all parameters beforehand. Changes in bandwidth will
cause standard fingerprinting techniques to fail.

B. Contributions

We propose what is, to the best of our knowledge, the
first fingerprinting system for devices transmitting at multiple



bandwidths and demonstrate experimental results on a cognitive
radio system using eleven bandwidths. Currently, any large
changes in a device’s bandwidth requires an entirely new set
of reference data to re-identify the device. This is impractical,
and increases the complexity of PLI systems. We propose a
transfer learning method for the identification of devices with
changing transmission parameters and limited reference data.
A small subset of devices are enrolled at each bandwidth, and
used to describe intra-bandwidth relationships. A method for
choosing how to enroll devices to minimize the number of
device and bandwidth combinations is given.

Experimental results validate the proposed method using
data gathered from 50 transmitters operating at eleven different
bandwidths. Several variations on the method are compared,
and all perform significantly better than current techniques.
This is compared with performance using another transfer
learning technique, without any transformation, and with the
ideal performance when the device has reference signals at
the transmission bandwidth. We also point to future directions
for transfer learning applied to radio fingerprinting, including
varying carrier frequency and modulation types.

C. Paper structure

The paper is arranged as follows: Section II covers several
preliminary points including the basic steps for PLI, an
introduction to transfer learning techniques, and a description
of feature extraction. In Section III an overview of physical
layer identification (PLI) for cognitive radios is given along
with possible attacks on this system. In Section IV we describe
a robust method for fingerprinting cognitive radio devices
with changing transmission parameters. This is followed by a
description of the experimental setup and results in Section V.
We end with a summary of related work on securing cognitive
radio networks, and some future directions for fingerprinting
in DSA systems.

II. PRELIMINARIES

We present the basic steps for device fingerprinting, as well
as frequency feature extraction. This is followed by an overview
of transfer learning and related methods.

First, we establish a common notation to be used in
discussing transfer learning methods, fingerprinting cognitive
radios, and presenting experimental results:

Ri A set of records from transmitter i
RiB A set of records from transmitter i at bandwidth B
R A set of transmitters, {i, ..., j}
r[x : y] Index into a record r, from point x to y
L Features extracted from a set of records R
τ Threshold for validation
d(RR, RT ) Distance metric between two sets of records
D(RT ,R) Indicates a function to find a vector of distances,

[d(RT , Bi), ..., d(RT , Bj)]>, i, ...j ∈ R
F(r) Fourier transform of a single record, r
cov(•) The covariance of a dataset
min(•) The minimum of a vector
| • | The cardinality of a set

Figure 1: An example record (normalized to have zero mean
and variance of one). The transient portion of the signal is on
the left, and by 20 µs it has settled into steady state.

A record is a finite length discrete signal captured by an
oscilloscope, see Figure 1.

A. Fingerprinting basics

When a device transmits the network must verify its identity
to ensure it is following the spectrum access requirements.
One or more records RT are captured from the transmitted
signal. These records must contain a portion of the signal which
is constant across transmissions, generally a device identifier
such as MAC addresses, or the initial part of a frame. The
captured records RT have features extracted from this constant
portion, LT , forming a test set. A database contains features
extracted from records enrolled by each device to be identified.
A reference set of features LR from the asserted identity are
found in the database. To determine if the device’s asserted
identity is valid the distance between test and reference set
is calculated. If it falls below a predetermined threshold the
device is accepted. In summary,

1) Extract features from captured records, RT → LT

2) Calculate d(LR, LT )
3) Accept identity if d(LR, LT ) < τ

Mahalanobis distance is frequently used as the distance
metric, but other measurements are possible. The threshold
τ can be assigned per device, or to a group of devices (i.e.
devices of same model, or with same transmitter parameters).
The threshold is chosen based on desired false accept rate
(FAR) and false reject rate (FRR) [5, Chapter 5]. The FRR
is found as the percentage of time a valid user is incorrectly
rejected for a given τ . Likewise, for a given τ the FAR is
the percentage of time an impostor is incorrectly identified as
the reference device. Adjustments to τ allow some variation
between records (the performance of an identification system
is very sensitive to variation in the signal, as mentioned in
I). The threshold can be dynamically updated, but the basic
fingerprinting method is still severely limited.

The equal error rate (EER), found by choosing τ so that
FAR = FRR, indicates overall performance. Under some
conditions the equal error rate is unsuitable for directly



comparing classifiers [5, Chapter 5], but it is an easy way
to summarize performance of multiple systems.

B. Frequency feature extraction

Many possible features exist for PLI (discussed in Section
VI). In this work we use frequency based features, specifically
the amplitude of the instantaneous frequency of the steady
state portion of the record. Features are extracted from a
subset of the Fourier transform of each record. This allows
reducing the dimensionality of each record, and easily applying
machine learning and transfer learning techniques. Additionally,
principal component analysis (PCA) is applied to the features
to further reduce dimensionality.

Before extracting features from a record it is necessary to
decide on a bin width (or frequency resolution), Q, found by
Q = β

N , where β is the bandwidth covered by the features
and N is the desired number of features. The record length
required, X , can be found as X = Fs

Q , where Fs is the sampling
frequency. For each record the start of signal, s, is found using
a power threshold and refined by a matched filter with a known
signal. The matched filter will produce the largest output when
the start of the known signal aligns with the start of the record.
The known signal can be chosen as an arbitrary record from
a device. The start of signal and transient is discarded, so
that only the steady state portion is used for identification. If
the transient ends within d samples of the start of a record
r, features can be found using F(r[o+ d : o+ d+X]). The
logarithm of the magnitude of the N bins centered around the
carrier frequency bin form the final features.

Variation in the main lobe, as can be seen in Figure 2a,
provides the best features for fingerprinting. Attenuation in
the side lobes reduces the effectiveness of using these bins
as features. The feature bandwidth, β, should be close to the
bandwidth of the signal to include the most useful features. It
is possible to choose bin width as a multiple of transmission
bandwidth bandwidth, shown in Figure 2b, so that the bins have
similar magnitude at all bandwidths. Superficially, this would
appear to solve the problem of variation between bandwidths.
However, sufficient variation exists that the transmitters cannot
be accurately identified with direct comparison.

C. Transfer learning & related approaches

There are a variety of machine learning techniques to
improve performance with dissimilar datasets, including repre-
sentation learning, multi-view learning and transfer learning
[6], [7]. Representation learning looks for underlying factors
that determine the features. Use of these underlying factors
can improve performance beyond what the raw features
would provide. Typically this is done with deep learning
techniques and neural networks. Multi-view learning describes
a problem where there are multiple datasets describing the
same phenomena; e.g. observations collected at different times
or locations. It attempts to combine these multiple views
to describe the data better than a single view can. Each
view will contain slightly different information on about the
phenomena, and by combining views a more complete picture
is had. Transfer learning encompasses a variety of techniques

to improve performance in several different problem types.
Transfer learning attempts to transfer information gained from
one dataset to a similar but unrelated set of data. An overview of
techniques is given in [7]. It allows dealing with non-stationary
distributions and boosting performance of the dataset of interest
(the target) by incorporating information from another dataset
(the source). From the perspective of a DSA system, the source
dataset could be enrolled data from the device under test (DUT),
and target data would be test data at a different bandwidth

One of the simplest transfer learning techniques is to re-
weight samples in the dataset [7]. This is suitable when the
source dataset only differs slightly from the target. In [8] older
samples are assigned a lower weight in the training data, as are
samples with an ambiguous classification. This allows adapting
to gradual changes in signal characteristics. Generally, the target
has less data available than is necessary for good performance.
Several methods allow combining datasets, so that a larger
source dataset with a "similar" distribution is used to improve
performance. Some techniques also allow the source dataset
to use an entirely different feature set from the target data.

Representation learning takes a different approach, and has
found some success when applied to transfer learning problems.
Typical machine learning algorithms require considerable effort
to choose features. Although there may be hundreds of features
available in a machine learning problem, each contributes
very little information. Very high dimensional data needs to
be reduced for most algorithms to handle it efficiently, and
finding the features that best represent the data can be a time
consuming task. In a very large dataset the distribution of
features may be largely determined by a few "underlying
factors" or "latent variables" [6]. Determining what these factors
are is not straightforward. Representation learning tries to avoid
the need for a human to choose the best features by applying
deep learning and other techniques to reduce a high dimensional
dataset to a small number of features.

Lastly, multi-view learning is useful when a source and
target dataset come from a common source. In [9] a multi-view
learning approach is used to allow location fingerprinting using
outdated training data. The objective of location “fingerprinting”
is to determine a user’s location based on received signal
strength (RSS) values. Given a set of training data consisting of
location coordinates and corresponding received signal strength
(RSS) values at a previous time and the current time a manifold
co-regularization problem is solved to find a transformation
between the datasets. This allows using the complete training
data from the past time while requiring data from only a few
training points at the current time.

All three of these approaches are closely related. The
technique outlined in this paper is based on multi-view learning,
but can be seen as transfer learning where the source is the
enrolled data, and the target is a set of records captured at a
different bandwidth. Using current fingerprinting methods the
target data cannot be identified with a high degree of accuracy.
With a transfer learning approach, it should be possible to
identify records at a target bandwidth using features from
records at a different bandwidth.
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Figure 2: Average of features for three transmitters when broadcasting at two different bandwidths. (a) Features using a constant
bin width, note the difference between bandwidths. (b) Bin width calculated as a multiple of the bandwidth. Note the large
variation in transmitter 30: although the features are more similar than in (a), identification is not possible with a direct
comparison.

III. SYSTEM & THREAT MODELS

A dynamic spectrum access (DSA) system using cognitive
radios was described in Section I-A. We now describe how
fingerprinting may be applied to such a system, and how an
adversary would try to subvert it.

A. System model

In the DSA network every user is allocated spectrum by
a central authority. Users without authorization are blocked
from using the network by jamming their signal. Each user
is assigned spectrum with certain restrictions including time,
duration, and transmit power. Users that violate these rules
receive less bandwidth, or have their transmission jammed.
This ensures selfish users will not attempt to use more than
their fair share of the spectrum.

An identifier unique to each device is used to track spectrum
access. This must form a recognizable part of each transmission,
so that the network can determine which transmissions are
valid.

B. Adversary

An adversary may violate the rules on spectrum access, or
attempt to use the network without authorization. In either
case this behavior will degrade performance of the network for
legitimate users. In the case of a per user identifier, such as
MAC addresses, it is quite easy for an attacker to impersonate
a legitimate device by copying the identifier. An adversary can
also record the portion of the signal used for identification,
and replay it when more complex identifiers are used.

As described in Section II-A fingerprinting allows identifying
devices. An attacker’s transmission will have characteristics
different from the device whose identity is taken. Unfortunately,
current techniques are limited to comparing transmissions at
the same bandwidth. Knowing this, an adversary could change
bandwidth to one where the stolen identifier has not been used,
and the system would be unable to refute the attackers identity.
In the next section we propose a robust fingerprinting technique

to fix this by allowing identification of a device at a bandwidth
different from the one it has enrolled at.

IV. ROBUST FINGERPRINTING

Physical layer identification is possible due to variation in
the hardware of each device. Age, model, and manufacture
all cause small differences in the output signal. As SDRs
changes transmission parameters in software, it is to be
expected that the signal variation due to hardware does not
change significantly. In this case, the relationship between
transmitters should be fairly consistent across bandwidths.
Loosely speaking, if d(Ri1, R

j
1) >> 0 then d(Ri2, R

j
2) >> 0.

Similarly if d(Ri1, R
j
1) ≈ 0 then d(Ri2, R

j
2) ≈ 0

Using this observation, we present the steps to extract a
second set of features which are mostly invariant to changes
in bandwidth. This is followed by determining the number
of devices that must be enrolled at each bandwidth, and a
brief description of another transfer learning approach for
comparison.

A. Subspace feature extraction

Features at each bandwidth are in a subspace of the larger
space of features for all possible bandwidths, as depicted in
Figure 3. The bandwidth dominates the features, while the
variation in each transmitter contributes relatively little. For
this reason, relations between transmitters each bandwidth will
be consistent, although useful comparisons between transmitters
at different bandwidths are not possible. We propose a method
based on a set of fixed transmitters which are used to describe
each record (or set of records) within the subspace for data at
a bandwidth. Features derived this way will describe a device
at different bandwidths in a nearly-constant manner.

When a device asserts an identity at a bandwidth which has
no enrolled data for the device its identity cannot be verified
with standard fingerprinting techniques. We call this bandwidth
the target bandwidth, and choose a fixed set of transmitters
R with data enrolled at this bandwidth. The distance of the
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Figure 3: Example of two different subspaces in the overall fea-
ture space. The relationship between transmitters is consistent
at each bandwidth, but transmitters are not directly comparable
between the two bandwidths.

device under test to each device in the fixed set is found at the
target bandwidth, denoted DT = D(LT , LR

T ). At the source
bandwidth the distance is measured to the same devices, and the
asserted identity of the device under test: DS = D(LR, LR).
These distances are more robust to changes, and can be
compared directly for identification, d(DS , DT ) < τ .

Euclidean distance works well to find DS and DT . Figure
6 shows distances to nine transmitters at two bandwidths using
euclidean distance. These distances vary in magnitude at the
source and target bandwidths: consequently cosine distance
works well for comparing DS and DT as it ignores magnitude.
The distances to devices in R form features that are robust to
changes in bandwidth.

In summary, given a target bandwidth with no reference data
enrolled for the device under test, it can be identified using
data at a source bandwidth as follows

1) Choose a set of fixed transmitters, R with data at target
bandwidth

2) Find distances to DUT, DT = D(LT , LR
T )

3) Find distances to asserted identity at source bandwidth,
DS = D(LR, LR

S )
4) Use d(DR, DT ) with appropriate τ to identify device

Features are only compared directly when they are from the
same bandwidth. Conveniently, this opens up the possibility
of using different numbers of features at each bandwidth.

B. Choice of R
The choice of R will be important for best performance

and to reduce the number of device-bandwidth combinations
which need to be enrolled. First, we consider the size of
R. The eigenvalues of a set of data reflect the amount of
variance contained in each dimension of the data. Larger
eigenvalues indicate more variation in the data, while smaller
values typically correspond with noise ( this is used for principal
component analysis: components corresponding to the largest
eigenvalues are selected). The eigenvalues of the features at
a single bandwidth will describe the dimensionality of the
subspace at that bandwidth. In Figure 4 the first 50 eigenvalues
have been plotted for records from all transmitters, at four
bandwidths. Clearly the first dimension contains the most
variation, and the majority of variation in the data is contained
in the first five to ten dimensions. Thus, the number of fixed

Figure 4: Sorted eigenvalues of the features at a bandwidth,
using data from all devices. Most of the variance in the data is
concentrated in the first dimension. The fifth eigenvalue is over
two orders of magnitude smaller than the first, which suggests
no more than five fixed transmitters are needed.

transmitters required will be much smaller than the number of
devices enrolled in standard fingerprinting techniques.

So far we have ignored the question of which devices should
be inR . The easiest way is to randomly select devices to enroll
at each bandwidth. However, randomly enrolling transmitters
will allow two that are very close to each other to both be
used. Since the fixed transmitters are used to describe points
in a space, this could constitute redundant information.

A method to ensure the devices in R are not close to each
other follows: let R denote the transmitters currently in the
reference set, and i be a new transmitter. Create a new reference
set R′ = R∪ {i}. Transmitter k is removed from R′

, where
k is chosen so that min(D(Lk, LR

′′

)) <= d(Ll, Lj)∀l 6= j ∈
R′′

where R′′
is the new reference set, of the same size as

R. In other words, a transmitter is added to R at a given
bandwidth when it is not similar to other transmitters in R at
that bandwidth; when a device is added to R, the device most
similar to other devices in R is removed.

The solution is dependent on the initial choice of R. This
is a greedy algorithm and does not provide an optimum
solution, nor is there necessarily a global optimum. In Section
V experimental results are given for the choice of R.

C. Another transfer learning approach

We compare our results with a transfer learning approach
designed for multi-view data. In the fingerprinting problem
each “view” of the data corresponds with a bandwidth.

In [10] a method of aligning multiple views is presented.
Each class of data is transformed (translation and rotation) so
that the mean and variance of data is the same in each view.
The identification problem is based on partially unlabeled data
(i.e. the true identity of the device under test is unknown), so
some slight modifications are made to this method: rather than
finding a per-class transform, a generic transform is found based
on all datasets at each bandwidth, so that cov(LS) = cov(LT ).
This amounts to a rotation of features from the source and
target bandwidth, the translation is unnecessary as the data is
zero mean.



Figure 5: Experimental setup. Computer controls the SDR
using GNUradio; oscilloscope captures records sent from the
SDR and sends the transmission parameters to the computer.

V. EXPERIMENTAL EVALUATION

We present results of running the method on real world data.
Fifty SDR devices were used with GNUradio to collect data at
eleven bandwidths. Features with a bandwidth of 2MHz were
extracted from this data. Different numbers of fixed transmitters
chosen randomly and as described in Section IV-B are evaluated.
Although the method falls short of the ideal performance, it is
better than the other methods evaluated. We present a conjecture
on why the fixed transmitters accurately describe devices across
bandwidths, and discuss the best way to enroll devices.

A. Transmitter parameters

The Gnuradio software provides an easy way to modulate
data at different bandwidths and transmit to a SDR device. The
signal was created using the QAM Mod block in GNUradio,
using a quadrature amplitude modulation (QAM) signal con-
stellation of size four modulated at 800MHz. Eleven different
bandwidths were used, with nine evenly distributed between
250 kHz and 1.25MHz, as well as at 1.67MHz and 2.5MHz.

The oscilloscope used is a Tektronix DPO7354C [11],
running Matlab scripts to capture data and invoke GNUradio
with the correct transmit parameters for each bandwidth. The
data sequence is a randomly generated sequence of bits, created
beforehand and re-sent for all transmissions. The data sequence
was sent repeatedly with a sufficient pause between subsequent
transmissions to ensure that the oscilloscope did not trigger
multiple times on the same transmission.

The data capture setup uses a desktop computer running
Ubuntu 14.04 LTS. GNUradio version 3.7.10.1 was used to
modulate the data for run each SDR. Fifty transmitters were
used from 29 Ettus devices, shown in Table I. The N210s
[12] were used with daughtercards with a single transmit
frontend. The B210s [13] have two transmit frontends, and
both were fingerprinted although in two cases frontend A was
omitted in error, leading to fewer datasets from frontend A.
This should have no impact on the data. Each transmitter
frontend or daughtercard was connected to the oscilloscope
with a 3 foot SMA cable(see Figure 5), and data was collected
at all 11 bandwidths. A sampling rate of 20 GS/s was used,
while the trigger level and oscilloscope gain was chosen
for each transmitter, although the settings were reusable

Table I: Transmitters used for fingerprinting.

Model Number Daughtercard or Number
of SDRs frontend of datasets

N210r4 6 SBX 3
UBX 3

B210 23 A 21
B 23

total 29 50

for most transmitters of the same model. Once each SDR
began transmitting records of length 4,000,000 were captured,
consisting of noise before transmission, a transient and the
steady state portion of the signal, shown in Figure 1. After
discarding the transient, 3,000,000 points (150 µs) were used
to extract the fingerprinting features. Records where the mean
of the absolute value was much larger or smaller than normal
were marked as bad, and not used in subsequent analysis.
Almost all bad records occurred when the SDR first begins
transmitting, and were probably due to the startup behavior of
the radios. Between 481 and 521 records were collected from
each transmitter at each of eleven bandwidths.

B. Feature parameters

The records captured consist of a sequence of voltage level
codes. These are multiplied by the y-increment from the
oscilloscope to obtain the actual voltage, then normalized
so that each record has zero mean and unit variance. The
features used are 150 bins with a width of 6.67MHz. This was
chosen empirically. To calculate the features 3,000,000 points
are needed. These are taken beginning at 2,000 points after
the detected start of the signal, to ensure that the steady-state
portion of each record is used for fingerprinting.

The resulting features at each bandwidth are adjusted to
have zero mean and PCA is applied to reduce the number
of features to 20. This was done to speed computation times.
The distance to each reference transmitter is calculated using
euclidean distance, shown in Figure 6. It can be seen that the
relationships between transmitters are approximately constant
between bandwidths. To compare distances across bandwidths
cosine distance is used.

For comparison when no transfer learning is used, the bin
width was determined based on the transmission bandwidth:
for a transmission at βMHz, the resulting feature width βL was
found as βL = 20e6 β

Fs
. This creates the features previously

shown in Figure 2b.

C. Performance of robust fingerprinting

We present results on the size of R, and the best choice
of transmitters in R. To easily compare performance between
methods, the cumulative distribution of EER is used: The
threshold τ is found so that the false accept rate and false
reject rate is equal. This rate is the equal error rate (EER). In
a system with perfect performance it is zero, and in a practical
system most should be near zero. The cumulative distribution
function expresses what percentage of EERs fall below the
rate on the x-axis.

Each transmitter is treated as the DUT, and all source
and target bandwidth combinations are tested, excluding
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Figure 6: Distance to reference transmitters for three trans-
mitters at two different bandwidths. The variation in features
for each transmitter are largely consistent between bandwidths.
Using cosine distance helps overcome the difference in magni-
tude. Average of distances for all records available, with dotted
lines marking 10th and 90th percentile.

when the source and target bandwidth are equal. The equal
error rate is found for each combination. This is repeated
tentimes, randomly choosing R transmitters each time. The
cumulative distribution of the EERs is shown in Figures
7a. Over 60% of the device, source bandwidth, and target
bandwidth combinations tested have an EER below 10% with
|R| = 20. For |R| = 2 performance is much worse: only 30%
of the EERss are in this range. Of course, performance is
better or worse for some target bandwidths, but this gives an
impression of how the system should perform in general.

It can be seen that the results improve as the size of the
fixed transmitter set increases. The improvement diminishes
with increasing size, and above |R| = 10 there is not a
substantial improvement. This suggests that the relationship
between bandwidths is more complex than can be described
by a fixed number of points, and that ten fixed transmitters
approaches the upper limit on performance.

The choice of fixed transmitters also has an impact on perfor-
mance. To evaluate this, the fixed transmitters were chosen as
described in Section IV-B. For each source and target bandwidth
pair, the set size was increased until |RT ∪RS | =M , where
M is the desired number of fixed transmitters. This gives the M
‘fixed transmitters that are “most different” at both bandwidths.
This was also repeated ten times with random initialization
each time, and equal error rates found as before. The overall
performance decreases substantially, see Figure 7b. Clearly
the choice of transmitters in R is best done randomly. This
suggests that the relation between subspaces is more complex
than supposed.

D. Comparison with other approaches

Lastly we compare our method with several other approaches.
The ideal performance (calculated using Mahalanobis distance
with reference data is at the same bandwidth, d(RRT , R

T
T )) is

shown, with over 90% of transmitters having an eer below
five at any bandwidth, shown in Figure 7c. When no transfer

learning method was applied, the equal error rate was found
directly by calculating d(RRS , R

T
T ), using Mahalanobis distance

once again. The features without any transformation applied
were only tested at adjacent source and target bandwidths.
Beyond this, the results were extremely poor. In a practical
system, this would increase the number of bandwidths a device
is required to enroll at, but even so the equal error rate is below
exhibits only slightly better than random behavior, with 50%
of devices having an EER below 30.

The generic transform was also tested only at adjacent
bandwidths, for the same reason. Surprisingly the transfer
learning method is no better than using features with bin
width based on bandwidth without any transformation. This
suggests the change between sub spaces alters more than the
mean and covariance of the data. This is confirmed by the
variation in reference distances, shown in Figure 6. Although
the proposed method does not meet ideal performance, it
provides a substantial improvement over existing fingerprinting
techniques, and allows identifying a device enrolled at a single
bandwidth at a large number of additional bandwidths.

E. Origin of similarity

Common sources of device variability include carrier os-
cillator offsets, variation in amplifier and filter response in
the RF frontend, and, in the case of SDR, the digital-to-
analog converter (DAC) used to produce the baseband signal
[1]. Because we did not vary the carrier frequency and
the amplifier/filter responses are likely to be small over the
bandwidths considered, we conclude that the primary source
of intra-device signaling variability would be attributable to an
SDR’s DAC.

The bandwidth of the transmitted signal is determined by
the samples-per-symbol (SPS), which corresponds to the DAC
outputting a given voltage for an SPS-dependent period of time.
As the level of the DAC output would be primarily affected
by settling time, and under the assumption that settling time is
much lower than the lowest SPS duration, it is reasonable to
assume that the DAC output would be invariant with respect
to bandwidth for each symbol. Thus we would expect that the
distance between transmitter features, which are attributable to
the DAC, would also remain roughly constant across different
bandwidths.

F. Enrolling devices

The number of transmitters in R must accurately capture
the relationship between devices. More transmitters requires
storing more data and enrolling devices at multiple bandwidths.
Both of these actions should be minimized.

We consider a system with M devices and B possible
bandwidths. Using standard fingerprinting techniques each
device must have reference data enrolled at each bandwidth.
This would require MB reference datasets to accurately
identify each device Using the proposed method BD reference
sets are required, where D = |R| is the number of fixed
transmitters used. The amount of reference data has been
greatly reduced: 550 datasets would be required for current
fingerprinting techniques, In Section V-C it was shown that
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Figure 7: Cumulative distribution of EER of all transmitters and bandwidths, (a) EER distribution for various sizes of R, chosen
randomly. Note the diminishing returns as |R| increase. (b) EER distribution choosing R as described in Section IV-C. The
performance is notably worse. (c) EER distribution comparing all methods: ideal performance; results shown in (a) and (b)
with ten fixed transmitters; the generic rotation; and performance using source and target features with no transformation. The
generic rotation and calculation without transformation use features with bin width based on transmitter bandwidth and only
tested source and target bandwidths that are adjacent.

less than ten are required per bandwidth. As there are 50
devices in the system this is only slightly more data than
current techniques require for a single bandwidth, and allows
identification to occur at multiple bandwidths.

VI. RELATED WORK

We briefly cover current physical layer identification (PLI)
techniques, which allow identifying devices under limited
and unchanging conditions. We also cover some techniques
which allow identifying devices over time, including a transfer
learning approach. Channel fingerprinting is similar to PLI
methods, but relies on characteristics of the channel rather than
the device’s hardware. Lastly, several approaches to embed
unique identifiers in the signal(watermarking) are covered.

A. Physical layer identification

The state of the art for physical layer identification (PLI) is
described in [1]. Features including instantaneous frequency,
clock skew, transient length, timing errors, and the wavelet
decomposition coefficients are used, and can be extracted
from the steady state or transient portion of the record.
The Fourier transform and wavelet decomposition both allow
easily extracting a large number of features, and provide
good performance. Results for fingerprinting a diverse set of
transmitters including Bluetooth, GSM, VHF, UHF, and IEEE
802.11 transceivers are included. Most records were collected
“in close proximity”, using the same capture setup for each
device. The systems covered have error rates (calculated as
percentage of incorrectly classified records) from less than 1%,
to nearly 30% with devices of the same model and manufacture.

In [4] channel equalization is used to compensate for
differences between two capture setups. This decreases the
EER from over 40% (nearly random) to less than two percent.
Wang et al. propose a theoretical model for wireless PLI in
[14]. The side lobes of the power spectrum of the signal are
identified as having the most significant variation. However,
in practice the attenuation in the side lobes causes significant
variation between records and makes them a poor feature.
It was confirmed that the fingerprint is very dependent on

the channel and hardware used (e.g. increasing the distance
between transmitter and receiver from 1m to 6m prevented
the identification of devices until the fingerprint database was
updated with records at the new distance). This matches other
research [1], which has found that frequency based fingerprints
are affected by changes in the channel.

B. Transfer learning for fingerprinting

In [8] a transfer learning method is applied to PLI. A
clustering algorithm is used to identify users claiming multiple
identities, and a transfer learning step is included to update
the information about each device at each time instance. The
dynamic nature of cognitive radio is not directly addressed.
Although it is specifically applied to the primary user emulation
(PUE) attack on a cognitive radio, the method is applicable to
any fingerprinting problem where device fingerprints experience
slight changes over time. The method corrects for gradual drift
in features over time, not the sudden change caused by a change
in bandwidth. The problem of tracking signals that vary over
time has also been presented in other works, e.g. in [15] an
adaptive thresholding technique was proposed.

C. Other physical layer approaches

In addition to device fingerprinting other physical layer
characteristics can be identified. These approaches are based
on the characteristics of the wireless channel and physical
location of the device, rather than device hardware.

In [16] Xiong and Jamieson propose using angle of arrival to
detect attacks. An antenna array is used to track angle of arrival
of incoming packets. An attack is identified when messages
claiming to be from the same device arrive from multiple
directions. The angle of arrival would be very difficult to forge,
but very easy to work around if the attacker has the ability place
a rogue transmitter where desired. A similar approach using
RSS is explored by Yu et al. in [17]. RSS values from several
transmitters in the cognitive radio network are used. While it
is relatively easy to alter RSS values at a single transmitter,
it is much more difficult to alter them for all transmitters in
the network. At the very least it would require a directional



antenna, and approximate knowledge of the placement of all
devices.Simulation shows that a network of devices report RSS
values can identify an attacker, as long as it is not placed near
the device it is impersonating.Although channel characteristics
are difficult to forge, both methods fail if the attacking device
can be placed near the device it is impersonating.

In [18] Liu et al. evaluate wireless link signatures for
identifying the PU. Some kind of initial knowledge of what
the PU’s link signature is is required, so they propose placing
a helper node near the primary user. The helper node transmits
when the channel is vacant, and allows secondary user (SU)
to extract the link signature. The helper node transmission
encounters some problems: it must be resistant to replay attacks,
placed close enough to the PU to have a similar link, and be
able to detect the PU’s transmissions.

D. Signal embedding

Lastly, several approaches based on watermarking signals
have been proposed [19]–[21]. A watermark identifying the
user is embedded in each transmission. It is important that
the embedding not require any changes to the transmitted
signal, so that legacy systems are not impacted. To a receiver
the watermarked signal should appear the same as the signal
without the watermark. At the same time another cognitive
radio should be able to easily extract the licensing information.

In [19] Vireshwar et al. propose embedding authentication
sequence using modifications to the frequency offset of the
signal. Frequency offset is compensated for at the receiver, so
embedding licensing information in this way does not interfere
with the normal operation of the system.

A similar proposal is given in [20] to embed information
in second-order cyclostationary features. However, to avoid
the need to wait for a large amount of data, Jin et al. [22]
propose to embed the hash in small modifications to the
QAM constellation. This can be observed immediately by
other transceivers. A proposal to use the cyclic prefix is given
in [21]. Simulations show that it has a much smaller impact
on the bit error rate (BER) than [22], however experimental
results using a SDR show a substantially higher BER than the
simulation suggested.

Embedding licensing information in the QAM constellation
is evaluated in [23], as well as a method exploiting error
correction coding. Many systems use Reed-Solomon coding
to correct errors. In a system with high signal to noise ratio
(SNR) the error correction coding may not be needed to correct
channel errors, as it would be possible to modify some number
of bits of the signal with no error visible at the receiver.

These methods allow identifying transmitters in a way that is
compatible with legacy systems. However, they are susceptible
to key theft, and require additional infrastructure to distribute,
manage, and revoke keys. Although the modifications to the
signal are invisible to receivers, they will have an impact on
performance, including bit errors and SNR.

VII. CONCLUSION

DSA requires new methods to prevent selfish users and
attackers. We have shown that it is possible to identify

cognitive radio devices with changing parameters using a
comparison with a set of fixed reference transmitters. This
allows current PLI methods to be applied to DSA systems, and
substantially reduces the amount of training data needed. This
robust fingerprinting method allows identifying devices with no
modification to legacy systems, and very little overhead. The
method also allows using different types of features at each
bandwidth, although the improvement this provides remains to
be experimentally verified. Additional investigation is required
to confirm that the proposed method can be applied to changes
in carrier frequency and modulation type.
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